Quantum phase transition in a driven Tavis-Cummings model

被引:19
|
作者
Zou, J. H. [1 ]
Liu, T. [1 ,2 ]
Feng, M. [1 ]
Yang, W. L. [1 ]
Chen, C. Y. [1 ,3 ]
Twamley, J. [4 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Peoples R China
[3] Hunan Inst Humanities Sci & Technol, Dept Phys & Informat Engn, Loudi 417000, Peoples R China
[4] Macquarie Univ, ARC Ctr Engn Quantum Syst, Dept Phys & Astron, N Ryde, NSW 2109, Australia
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
基金
中国国家自然科学基金;
关键词
RADIATION-FIELD; SIMULATION;
D O I
10.1088/1367-2630/15/12/123032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase transitions (QPTs) describe when a many-body quantum system displays non-analytic behavior associated with a discontinuous change in a property of the ground state as a parameter is varied. The QPT in prototypical Dicke model is difficult to reach experimentally as the spin-field coupling strength must be quite large. In this work we describe a new model-the off-resonant Tavis-Cummings model where we drive the common mode, and discover a new type of QPT at quite low coupling strengths which are comparable with the geometric mean of the atomic and field detunings lambda similar to lambda(c) equivalent to root Delta(a)Delta(c). Through analytic methods we demonstrate this QPT for both finite and infinite numbers of spins and show that vertical bar < J(x)(J(z))>vertical bar/(N/2) similar to vertical bar lambda/lambda(c) - 1 vertical bar(gamma x(gamma z)) and < a(dagger)a >/N similar to vertical bar lambda/lambda(c) - 1 vertical bar(gamma a) for lambda >= lambda(c), with critical exponents gamma(x) approximate to 1/2, gamma(z) approximate to 1 and gamma(a) approximate to 1. We show that this QPT can be immediately observed by laboratory cavity-QED setups such as Bose-Einstein condensate in optical cavity and superconducting circuit-QED as well as a line of trapped ultracold ions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quantum dynamics of the intensity-dependent Tavis-Cummings model
    Rybin, A
    Miroshnichenko, G
    Vadeiko, I
    Timonen, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (49): : 8739 - 8754
  • [22] Tavis-Cummings Model with Moving Atoms
    Abdel-Khalek, Sayed
    Berrada, Kamal
    Khalil, Eied M.
    Eleuch, Hichem
    Obada, Abdel-Shafy F.
    Reda, Esraa
    [J]. ENTROPY, 2021, 23 (04)
  • [23] Concurrence in the inhomogeneous Tavis-Cummings model
    Lopez, C. E.
    Lastra, F.
    Romero, G.
    Retamal, J. C.
    [J]. QUANTUM OPTICS III, 2007, 84
  • [24] PERIODIC SQUEEZING IN THE TAVIS-CUMMINGS MODEL
    HASSAN, SS
    ABDALLA, MS
    OBADA, ASF
    BATARFI, HA
    [J]. JOURNAL OF MODERN OPTICS, 1993, 40 (07) : 1351 - 1367
  • [25] Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics
    Chuang, Yi-Ting
    Lee, Ming-Wei
    Hsu, Liang-Yan
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [26] Investigations of information quantifiers for the Tavis-Cummings model
    Obada, A. -S. F.
    Abdel-Khalek, S.
    Berrada, K.
    Shaheen, M. E.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (24) : 6624 - 6632
  • [27] Algebraic Bethe anzatz and the Tavis-Cummings model
    Bogolyubov N.M.
    [J]. Journal of Mathematical Sciences, 2000, 100 (2) : 2051 - 2060
  • [28] STATISTICAL PROPERTIES OF A TRANSFORMED TAVIS-CUMMINGS MODEL
    ABDALLA, MS
    [J]. PHYSICA A, 1991, 179 (01): : 131 - 144
  • [29] Multifractality in the interacting disordered Tavis-Cummings model
    Mattiotti, F.
    Dubail, J.
    Hagenmueller, D.
    Schachenmayer, J.
    Brantut, J. -P.
    Pupillo, G.
    [J]. PHYSICAL REVIEW B, 2024, 109 (06)
  • [30] Experimentally accessible quantum phase transition in a non-Hermitian Tavis-Cummings model engineered with two drive fields
    Zhang, Guo-Qiang
    Chen, Zhen
    You, J. Q.
    [J]. PHYSICAL REVIEW A, 2020, 102 (03)