Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy-dependent mechanism

被引:45
|
作者
Henriques, M [1 ]
Quintas, C [1 ]
LoureiroDias, MC [1 ]
机构
[1] GULBENKIAN INST SCI,MICROBIOL LAB,P-2781 OEIRAS,PORTUGAL
来源
MICROBIOLOGY-UK | 1997年 / 143卷
关键词
Saccharomyces cerevisiae; weak acids stress; extrusion; benzoic acid;
D O I
10.1099/00221287-143-6-1877
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
When grown in the presence of benzoic acid, Saccharomyces cerevisiae was able to extrude [C-14]benzoic acid when a pulse of glucose was given to preloaded cells. While octanoic, sorbic, hexanoic, salicylic, butyric and propionic acids were also inducers, ethanol and acetic acid were not. The mechanism of extrusion required energy and prior growth in the presence of the inducers. Diethylstilbestrol, an inhibitor of ATPases, prevented benzoic acid extrusion. Propionic acid was not actively extruded in cells adapted to either benzoic or propionic acid, behaving as an appropriate probe to measure intracellular ph. Even though the extrusion mechanism was active, benzoic acid entered the cells by a simple diffusion mechanism.
引用
收藏
页码:1877 / 1883
页数:7
相关论文
共 50 条
  • [31] POSSIBLE MECHANISM OF ENERGY COUPLING IN PURINE TRANSPORT OF SACCHAROMYCES-CEREVISIAE
    REICHERT, U
    SCHMIDT, R
    FORET, M
    FEBS LETTERS, 1975, 52 (01) : 100 - 102
  • [32] Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae
    Kildegaard, Kanchana R.
    Juncker, Agnieszka
    Hallstrom, Bjorn
    Jensen, Niels B.
    Maury, Jerome
    Nielsen, Jen
    Forster, Jochen
    Borodina, Irina
    YEAST, 2013, 30 : 152 - 152
  • [33] INTRACELLULAR CONTROL OF PROTON EXTRUSION IN SACCHAROMYCES-CEREVISIAE
    SIGLER, K
    PASCUAL, C
    ROMAY, C
    FOLIA MICROBIOLOGICA, 1983, 28 (05) : 363 - 370
  • [34] ENERGY-DEPENDENT ARSENATE EFFLUX - THE MECHANISM OF PLASMID-MEDIATED RESISTANCE
    SILVER, S
    KEACH, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (20): : 6114 - 6118
  • [35] Exploring the stress mechanism of tannic acid on Saccharomyces cerevisiae based on transcriptomics
    Li, Mengxiang
    Deng, Mengfei
    Chen, Yanru
    Fan, Haowei
    Huang, Yixin
    Huang, Yunhong
    Wan, Yin
    Fu, Guiming
    FOOD BIOSCIENCE, 2023, 56
  • [36] ENERGY-DEPENDENT LYSOSOMAL WRAPPING MECHANISM (LWM) DURING AUTOPHAGOLYSOSOME FORMATION
    SAKAI, M
    OGAWA, K
    HISTOCHEMISTRY, 1982, 76 (04) : 479 - 488
  • [37] Resveratrol cytotoxicity is energy-dependent
    Olivares-Marin, Ivanna K.
    Carlos Gonzalez-Hernandez, Juan
    Alberto Madrigal-Perez, Luis
    JOURNAL OF FOOD BIOCHEMISTRY, 2019, 43 (09)
  • [38] IS THE POLYMERIZATION OF ACTIN ENERGY-DEPENDENT
    FAULSTICH, H
    STOURNARAS, C
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1983, 364 (09): : 1120 - 1121
  • [39] ENERGY-DEPENDENT SLATER INTEGRALS
    WILSON, M
    FRED, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1969, 59 (07) : 827 - &
  • [40] ENERGY-DEPENDENT NUCLEAR PHENOMENA
    ERICSON, TEO
    AIP CONFERENCE PROCEEDINGS, 1985, (128) : 172 - 179