Semiparametric transformation models with random effects for recurrent events

被引:72
|
作者
Zeng, Donglin [1 ]
Lin, D. Y. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Box-Cox transformation; counting process; EM algorithm; intensity function; nonparametric likelihood; semiparametric efficiency;
D O I
10.1198/016214506000001239
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study a class of semiparametric transformation models with random effects for the intensity function of the counting process. These models provide considerable flexibility in formulating the effects of possibly time-dependent covariates on the developments of recurrent events while accounting for the dependence of the recurrent event times within the same subject. We show that the nonparametric maximum likelihood estimators (NPMLEs) for the parameters of these models are consistent and asymptotically normal. The limiting covariance matrices for the estimators of the regression parameters achieve the semiparametric efficiency bounds and can be consistently estimated. The limiting covariance function for the estimator of any smooth functional of the cumulative intensity function also can be consistently estimated. We develop a simple and stable EM algorithm to compute the NPMLEs as well as the variance and covariance estimators. Simulation studies demonstrate that the proposed methods perform well in practical situations. Two medical studies are provided for illustrations.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 50 条
  • [21] Abstract: Adequacy of Semiparametric Approximations for Growth Models with Nonnormal Random Effects
    Sterba, Sonya K.
    Mathiowetz, Ruth E.
    Bauer, Daniel J.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2008, 43 (04) : 658 - 659
  • [22] Semiparametric random effects models for longitudinal data with informative observation times
    Li, Yang
    Sun, Yanqing
    STATISTICS AND ITS INTERFACE, 2016, 9 (03) : 333 - 341
  • [23] Semiparametric estimation of censored transformation models
    Gorgens, T
    JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (03) : 377 - 393
  • [24] INDEPENDENCE TESTS IN SEMIPARAMETRIC TRANSFORMATION MODELS
    Huskova, Marie
    Meintanis, Simos G.
    Neumeyer, Natalie
    Pretorius, Charl
    SOUTH AFRICAN STATISTICAL JOURNAL, 2018, 52 (01) : 1 - 13
  • [25] Semiparametric transformation models for point processes
    Lin, DY
    Wei, LJ
    Ying, Z
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 620 - 628
  • [26] Testing the adequacy of semiparametric transformation models
    Allison, J. S.
    Huskova, M.
    Meintanis, S. G.
    TEST, 2018, 27 (01) : 70 - 94
  • [27] NONPARAMETRIC ESTIMATION OF SEMIPARAMETRIC TRANSFORMATION MODELS
    Florens, Jean-Pierre
    Sokullu, Senay
    ECONOMETRIC THEORY, 2017, 33 (04) : 839 - 873
  • [28] Testing the adequacy of semiparametric transformation models
    J. S. Allison
    M. Hušková
    S. G. Meintanis
    TEST, 2018, 27 : 70 - 94
  • [29] Semiparametric Transformation Models for Mixed Recurrent Event and Panel Count Data with Multiple Causes of Failure
    Sankaran, P. G.
    Hari, S.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2024, : 923 - 938
  • [30] Semiparametric additive intensity model with frailty for recurrent events
    Yan Yan Liu
    Yuan Shan Wu
    Acta Mathematica Sinica, English Series, 2011, 27 : 1831 - 1842