Interior local null controllability of one-dimensional compressible flow near a constant steady state

被引:6
|
作者
Mitra, Debanjana [1 ]
Ramaswamy, Mythily [2 ]
Renardy, Michael [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TIFR Ctr Applicable Math, Post Bag 6503,GKVK PO, Bangalore 560065, Karnataka, India
基金
美国国家科学基金会;
关键词
controllability; parabolic-hyperbolic system; compressible flow; Carleman estimate; NAVIER-STOKES SYSTEM;
D O I
10.1002/mma.4238
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the one-dimensional compressible Navier-Stokes equations with periodic boundary conditions, with initial conditions in a small neighborhood of a state of uniform density and uniform nonzero velocity. We prove that, with a control given only by a body force localized in a subinterval, we can steer the system to uniform density and velocity. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3445 / 3478
页数:34
相关论文
共 50 条
  • [31] Internal null controllability for the one-dimensional heat equation with dynamic boundary conditions
    Ben Hassi, El Mustapha Ait
    Jakhoukh, Mariem
    Maniar, Lahcen
    Zouhair, Walid
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2024, 41 (03) : 403 - 424
  • [32] Drying of wet solid particles in a steady-state one-dimensional flow
    Levy, A
    Mason, DJ
    Levi-Hevroni, D
    Borde, I
    POWDER TECHNOLOGY, 1998, 95 (01) : 15 - 23
  • [33] LOCAL EXACT CONTROLLABILITY OF A ONE-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
    Beauchard, Karine
    Lange, Horst
    Teismann, Holger
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (05) : 2781 - 2818
  • [34] Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy
    Azzaoui, Mohamed
    Salhi, Jawad
    Tilioua, Mouhcine
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (02) : 325 - 343
  • [35] On one-dimensional compressible Navier-Stokes equations with degenerate viscosity and constant state at far fields
    Dou, Changsheng
    Jiu, Quansen
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
  • [36] ON THE ONE-DIMENSIONAL STEADY AND UNSTEADY POROUS FLOW EQUATIONS
    BURCHARTH, HF
    ANDERSEN, OH
    COASTAL ENGINEERING, 1995, 24 (3-4) : 233 - 257
  • [37] THE MECHANICS AND THERMODYNAMICS OF STEADY ONE-DIMENSIONAL GAS FLOW
    SHAPIRO, AH
    HAWTHORNE, WR
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1947, 14 (04): : A317 - A336
  • [38] THE MECHANICS AND THERMODYNAMICS OF STEADY ONE-DIMENSIONAL GAS FLOW
    DUSINBERRE, GM
    SHAPIRO, AH
    HAWTHORNE, WR
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1948, 15 (02): : 179 - 181
  • [39] Steady state solutions of a one-dimensional biofilm model
    Pritchett, LA
    Dockery, JD
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (1-3) : 255 - 263
  • [40] ON THE ONE-DIMENSIONAL STEADY-STATE ISING PROBLEM
    HILL, TL
    JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (02): : 1122 - 1127