MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION OF THE SPECTRAL MEASURE OF AN EXTREME-VALUE DISTRIBUTION

被引:52
|
作者
Einmahl, John H. J. [1 ]
Segers, Johan [2 ]
机构
[1] Tilburg Univ, Dept Econometr & OR & Ctr, NL-5000 LE Tilburg, Netherlands
[2] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 5B期
关键词
Functional central limit theorem; local empirical process; moment constraint; multivariate extremes; National Health and Nutrition Examination Survey; nonparametric maximum likelihood estimator; tail dependence;
D O I
10.1214/08-AOS677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a random sample from a bivariate distribution function F in the max-domain of attraction of all extreme-value distribution function G. This G is characterized by two extreme-value indices and a spectral measure, the latter determining the tail dependence structure of F. A major issue in multivariate extreme-value theory is the estimation of the spectral measure (1)p with respect to the L-p norm. For every p is an element of [1, infinity], a nonparametric maximum empirical likelihood estimator is proposed for Phi(p). The main novelty is that these estimators are guaranteed to satisfy the moment constraints by which spectral measures are characterized. Asymptotic normality of the estimators is proved under conditions that allow for tail independence. Moreover, the conditions are easily verifiable as we demonstrate through a number of theoretical examples. A simulation study shows a substantially improved performance of the new estimators. Two case Studies illustrate how to implement the methods in practice.
引用
收藏
页码:2953 / 2989
页数:37
相关论文
共 50 条
  • [31] Estimation of the Bias of the Maximum Likelihood Estimators in an Extreme Value Context
    Beirlant, Jan
    Geffray, Segolen
    Guillou, Armelle
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 3959 - 3971
  • [32] Maximum likelihood estimation of extreme value index for irregular cases
    Peng, Liang
    Qi, Yongcheng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3361 - 3376
  • [33] Maximum entropy extreme-value seasonal adjustment
    McElroy, Tucker
    Penny, Richard
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (02) : 152 - 174
  • [34] MAXIMUM LIKELIHOOD ESTIMATES FOR PARAMETERS OF MTH EXTREME VALUE DISTRIBUTION
    LEDUC, SK
    STEVENS, DG
    [J]. JOURNAL OF APPLIED METEOROLOGY, 1977, 16 (03): : 251 - 254
  • [35] Galaxy distribution and extreme-value statistics
    Antal, T.
    Labini, F. Sylos
    Vasilyev, N. L.
    Baryshev, Y. V.
    [J]. EPL, 2009, 88 (05)
  • [36] AN EMPIRICAL APPRAISAL OF THE GUMBEL EXTREME-VALUE PROCEDURE
    HERSHFIELD, DM
    KOHLER, MA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (06): : 1737 - 1746
  • [37] ESTIMATING A MULTIDIMENSIONAL EXTREME-VALUE DISTRIBUTION
    EINMAHL, JHJ
    DEHAAN, L
    HUANG, X
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 47 (01) : 35 - 47
  • [38] AN EMPIRICAL APPRAISAL OF THE GUMBEL EXTREME-VALUE PROCEDURE
    HERSHFIELD, DM
    KOHLER, MA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (08): : 1106 - 1106
  • [39] Parameter and quantile estimation for the generalized extreme-value distribution: A second look
    Dupuis, DJ
    [J]. ENVIRONMETRICS, 1999, 10 (01) : 119 - 124
  • [40] Distribution and dependence-function estimation for bivariate extreme-value distributions
    Hall, P
    Tajvidi, N
    [J]. BERNOULLI, 2000, 6 (05) : 835 - 844