NONPARAMETRIC ESTIMATION OF SEMIPARAMETRIC TRANSFORMATION MODELS

被引:5
|
作者
Florens, Jean-Pierre [1 ]
Sokullu, Senay [2 ]
机构
[1] Toulouse Sch Econ, Toulouse, France
[2] Univ Bristol, Bristol, Avon, England
关键词
INSTRUMENTAL VARIABLES; IDENTIFICATION; REGRESSION; MARKETS;
D O I
10.1017/S0266466616000190
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we develop a nonparametric estimation technique for semiparametric transformation models of the form: H(Y) = phi(Z) + X' beta + U where H, phi are unknown functions, beta is an unknown finite-dimensional parameter vector and the variables (Y, Z) are endogenous. Identification of the model and asymptotic properties of the estimator are analyzed under the mean independence assumption between the error term and the instruments. We show that the estimators are consistent, and a root N-convergence rate and asymptotic normality for (beta) over cap can be attained. The simulations demonstrate that our nonparametric estimates fit the data well.
引用
收藏
页码:839 / 873
页数:35
相关论文
共 50 条