Hyperkahler Manifolds and Sheaves

被引:0
|
作者
Huybrechts, Daniel [1 ]
机构
[1] Univ Bonn, Math Inst, Bonn, Germany
关键词
Hyperkahler manifolds; moduli spaces; derived categories; holomorphic symplectic manifolds; STABILITY CONDITIONS; SINGULAR-VARIETIES; K3; SURFACES; CATEGORIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moduli spaces of hyperkahler manifolds or of sheaves on them are often non separated. We will discuss results where this phenomenon reflects interesting geometric aspects, e.g. deformation equivalence of birational hyperkahler manifolds or cohomological properties of derived autoequivalences. In these considerations the Ricci-flat structure often plays a crucial role via the associated twistor space providing global deformations of manifolds and bundles.
引用
收藏
页码:450 / 460
页数:11
相关论文
共 50 条
  • [21] Isometries of Ideal Lattices and Hyperkahler Manifolds
    Boissiere, Samuel
    Camere, Chiara
    Mongardi, Giovanni
    Sarti, Alessandra
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (04) : 963 - 977
  • [22] Families of Lagrangian fibrations on hyperkahler manifolds
    Kamenova, Ljudmila
    Verbitsky, Misha
    [J]. ADVANCES IN MATHEMATICS, 2014, 260 : 401 - 413
  • [23] Cohomology rings of toric hyperKahler manifolds
    Konno, H
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (08) : 1001 - 1026
  • [24] A new quadratic form on hyperkahler manifolds
    Park, Kwang-Soon
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (01) : 200 - 208
  • [25] The geometry and topology of toric hyperkahler manifolds
    Bielawski, R
    Danceri, AS
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (04) : 727 - 760
  • [26] Contraction centers in families of hyperkahler manifolds
    Amerik, Ekaterina
    Verbitsky, Misha
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [27] Generalized twistor spaces for hyperkahler manifolds
    Glover, Rebecca
    Sawon, Justin
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 321 - 342
  • [28] Quaternionic maps between hyperkahler manifolds
    Chen, JY
    Li, JY
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2000, 55 (02) : 355 - 384
  • [29] Ergodic complex structures on hyperkahler manifolds
    Verbitsky, Misha
    [J]. ACTA MATHEMATICA, 2015, 215 (01) : 161 - 182
  • [30] On type II degenerations of hyperkahler manifolds
    Huybrechts, D.
    Mauri, M.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2023, 30 (01) : 125 - 141