Stochastic multi-fidelity surrogate modeling of dendritic crystal growth

被引:1
|
作者
Winter, J. M. [1 ,2 ]
Kaiser, J. W. J. [1 ]
Adami, S. [1 ,2 ]
Akhatov, I. S. [3 ]
Adams, N. A. [1 ,2 ]
机构
[1] Tech Univ Munich, Chair Aerodynam & Fluid Mech, Dept Mech Engn, Boltzmannstr 15, D-85748 Garching, Germany
[2] Tech Univ Munich, Munich Inst Integrated Mat Energy & Proc Engn MEP, Lichtenbergstr 4a, D-85748 Garching, Germany
[3] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia
基金
欧洲研究理事会;
关键词
Gaussian processes; Multi-fidelity model; Stochastic surrogate modeling; Input warping; Dendritic growth; Multiresolution; SYMMETRICAL MODEL; MICROSTRUCTURES; SOLIDIFICATION; APPROXIMATIONS; COMPUTATION; CONVECTION; STABILITY; SELECTION; DYNAMICS; SCHEMES;
D O I
10.1016/j.cma.2022.114799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we propose a novel framework coupling state-of-the-art multi-fidelity Gaussian Process modeling techniques with input-space warping for a cost-efficient construction of a stochastic surrogate model. During model generation, we achieve high computational efficiency by combining a large number of cheap estimates (low-fidelity model) with only a few, computationally expensive, high-fidelity measurements. We base the fidelity hierarchy on coarse-grid approximations of high-fidelity numerical simulations and show its successful application within the proposed framework. Utilizing coarse-grid approximations for multi-fidelity modeling is attractive for many practical applications, since it often allows for multi-fidelity data generation with a single simulator. As benchmark, we apply this framework to generate a surrogate model for crystal growth velocities in directional dendritic solidification. The derivation of a relation between this tip velocity and process parameters, such as undercooling, thermal diffusivity, capillarity, and capillary anisotropy, has been in the focus of research for decades due to its important role on microstructure evolution during solidification. It defines the thermo-mechanical properties of the solidified part and influences its behavior in subsequent manufacturing steps. As data generator, we use the open-source simulation framework ALPACA, applying a conservative sharp-interface level set model. We assess the accuracy of the multi-fidelity tip velocity model by using cross-validation techniques. Compared to single-fidelity models purely based on high-fidelity data, our approach improves prediction accuracy significantly but only requires a little cost overhead for data generation. The stochastic nature of the resulting surrogate model allows for quantifying the uncertainty associated with predictions. This motivates the application of the model in Bayesian-optimization algorithms for inverse problems. Also, it may serve as input for microstructure simulations which rely on accurate relations between local solidification velocities and process parameters such as undercooling to predict grain-scale crystalline structures and which need material-dependent model calibration.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] A Multi-Fidelity Surrogate Optimization Method Based on Analytical Models
    Sendrea, Ricardo E.
    Zekios, Constantinos L.
    Georgakopoulos, Stavros, V
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, : 70 - 73
  • [32] Multi-fidelity surrogate models for VPP aerodynamic input data
    Peart, Tanya
    Aubin, Nicolas
    Nava, Stefano
    Cater, John
    Norris, Stuart
    Journal of Sailing Technology, 2021, 6 (01): : 21 - 43
  • [33] An Adaptive Multi-Fidelity Surrogate Model for Uncertainty Propagation Analysis
    Xiao, Wei
    Shen, Yingying
    Zhao, Jiao
    Lv, Luogeng
    Chen, Jiangtao
    Zhao, Wei
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [34] A Novel Multi-Fidelity Surrogate for Efficient Turbine Design Optimization
    Wang, Qineng
    Song, Liming
    Guo, Zhendong
    Li, Jun
    Feng, Zhenping
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [35] A multi-fidelity surrogate model based on support vector regression
    Maolin Shi
    Liye Lv
    Wei Sun
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2020, 61 : 2363 - 2375
  • [36] Selection of Existing Sail Designs for Multi-Fidelity Surrogate Models
    Peart, Tanya
    Aubin, Nicolas
    Nava, Stefano
    Cater, John
    Norris, Stuart
    Journal of Sailing Technology, 2022, 7 (01): : 31 - 51
  • [37] A multi-fidelity surrogate model based on design variable correlations
    Lai, Xiaonan
    Pang, Yong
    Liu, Fuwen
    Sun, Wei
    Song, Xueguan
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [38] Multi-fidelity surrogate model ensemble based on feasible intervals
    Shuai Zhang
    Pengwei Liang
    Yong Pang
    Jianji Li
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2022, 65
  • [39] Efficient initialization for multi-fidelity surrogate-based optimization
    Jeroen Wackers
    Riccardo Pellegrini
    Andrea Serani
    Michel Visonneau
    Matteo Diez
    Journal of Ocean Engineering and Marine Energy, 2023, 9 : 291 - 307
  • [40] A Sequential Sampling Approach for Multi-Fidelity Surrogate Modeling-Based Robust Design Optimization
    Lin, Quan
    Zhou, Qi
    Hu, Jiexiang
    Cheng, Yuansheng
    Hu, Zhen
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (11)