Effectiveness of the DIDIM method with respect to the usual CLOE method. Application to the dynamic parameters identification of an industrial robot.

被引:0
|
作者
Jubien, Anthony [1 ]
Gautier, Maxime
Janot, Alexandre [2 ]
机构
[1] IRCCyN Inst Rech Commun & Cybernet Nantes, ONERA French Aerosp Lab, Nantes, France
[2] Off Natl Etud & Rech Aerosp, Toulouse, France
关键词
Identification; output error method; non linear least squares; robot; dynamic parameters;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Usual Closed Loop Output Error (CLOE) method for dynamic parameters identification of robots has several drawbacks: slow convergence, sensitivity to initial conditions and the calculation of significant parameters is not easy-to-run. Recently a new CLOE method called as DIDIM for Direct and Inverse Identification Model needing only actual forces/torques data was validated on rigid robots. This method avoids the drawbacks of the usual CLOE method. With the DIDIM method, the optimal parameters minimize the 2-norm of the error between the actual forces/torques and the simulated ones. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of control-law and the same reference trajectory for both the actual robot and the simulated one. The DIDIM method simplifies dramatically the non-linear Least Squares problem by using the Inverse Dynamic Model in order to obtain an analytical expression of the simulated forces/torques which are linear in the parameters. This explains why the DIDIM method has a fast convergence. In this paper, the DIDIM method is compared with the usual CLOE method which uses the actual positions as output. Experiments are performed on a 6 degrees of freedom robot Staubli TX40.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] Identification Method of Payload Dynamic Parameters of Industrial Robot
    Chen Y.
    Hu L.
    Jiqiren/Robot, 2020, 42 (03): : 325 - 335
  • [2] An identification method of industrial robot's dynamic parameters
    Ding, Ya-Dong
    Chen, Bai
    Wu, Hong-Tao
    Shen, Hao-Yu
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2015, 43 (03): : 49 - 56
  • [3] An experimental robot load identification method for industrial application
    Swevers, J
    Naumer, B
    Pieters, S
    Biber, E
    Verdonck, W
    De Schutter, J
    EXPERIMENTAL ROBOTICS VIII, 2003, 5 : 318 - 327
  • [4] An experimental robot load identification method for industrial application
    Swevers, J
    Verdonck, W
    Naumer, B
    Pieters, S
    Biber, E
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2002, 21 (08): : 701 - 712
  • [5] An efficient robot payload identification method for industrial application
    Dong, Yunfei
    Ren, Tianyu
    Chen, Ken
    Wu, Dan
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2018, 45 (04): : 505 - 515
  • [6] Experimental identification of friction parameters of an industrial robot manipulator using an energy method
    Eskandarian, A
    Bedewi, NE
    JOURNAL OF ENGINEERING TECHNOLOGY, 1997, 14 (01): : 40 - 45
  • [7] Experimental identification of friction parameters of an industrial robot manipulator using an energy method
    George Washington Univ, Washington, United States
    J Eng Technol, 1 (40-45):
  • [8] Application of a homotopy optimization method for the identification of the model parameters of a robot prototype
    Luo Y.
    Römer U.J.
    Riegraf S.
    Fidlin A.
    Zirkel M.
    Zentner L.
    VDI Berichte, 2021, 2021 (2391): : 259 - 272
  • [9] A method for dynamic parameter identification of an industrial robot based on frequency response function
    Li, Bo
    Zhao, Wei
    Miao, Yunfei
    Tian, Wei
    Liao, Wenhe
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2024, 4 (04): : 461 - 471
  • [10] A workload identification method of industrial robot combining dynamic model and convolutional neural network
    Yue, Xia
    Wang, Yadong
    Zhang, Chunliang
    Long, Shangbin
    Li, Zhibin
    Wang, Yuhua
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (01):