A Molecular Explanation for Anomalous Diffusion in Supramolecular Polymer Networks

被引:32
|
作者
Ramirez, Jorge [1 ,2 ]
Dursch, Thomas J. [1 ]
Olsen, Bradley D. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Univ Politecn Madrid, Dept Chem Engn, Madrid, Spain
基金
美国国家科学基金会;
关键词
CROSS-LINKED NETWORKS; PROTEIN HYDROGELS; VISCOELASTIC PROPERTIES; ASSOCIATING POLYMERS; SELF-DIFFUSION; DYNAMICS; SHEAR; RELAXATION; RHEOLOGY; MODULI;
D O I
10.1021/acs.macromol.7b02465
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Recent experiments have revealed that a variety of associative polymers with different architecture (linear and branched) and different nature of the associating interaction (associative protein domains and metal-ligand bonds) exhibit unexplained superdiffusive behavior. Here, Brownian dynamics simulations of unentangled coarse-grained associating star shaped polymers are used to establish a molecular picture of chain dynamics that explains this behavior. Polymers are conceptualized as particles with effective Rouse diffusivities that interact with a mean field background through attachments by stickers at the end of massless springs that represent the arms of the polymer. The simulations reveal three mechanisms of molecular diffusion at length scales much larger than the radius of gyration: hindered diffusion, walking diffusion, and molecular hopping, all of which depend strongly on polymer concentration, arm length, and the association/dissociation rate constants. The molecular model establishes that superdiffusive scaling results primarily from molecular hopping, which only occurs when the kinetics of attachment are slower than the relaxation time of dangling strands. Scaling relationships can be used to identify the range of rate constants over which this behavior is expected. The formation of loops in the networks promotes this superdiffusive scaling by reducing the total number of arms that must detach in order for a hopping step to occur.
引用
收藏
页码:2517 / 2525
页数:9
相关论文
共 50 条
  • [21] Scaling Laws in Supramolecular Polymer Networks
    Xu, Donghua
    Craig, Stephen L.
    [J]. MACROMOLECULES, 2011, 44 (13) : 5465 - 5472
  • [22] Supramolecular Polymer Networks and Gels Preface
    Seiffert, Sebastian
    [J]. SUPRAMOLECULAR POLYMER NETWORKS AND GELS, 2015, 268 : V - VI
  • [23] Toughening of Glassy Supramolecular Polymer Networks
    Hohl, Diana Kay
    Ferahian, Anne-Cecile
    de Espinosa, Lucas Montero
    Weder, Christoph
    [J]. ACS MACRO LETTERS, 2019, 8 (11) : 1484 - 1490
  • [24] Anomalous Diffusion of a Polymer Chain in an Unentangled Melt
    Farago, J.
    Meyer, H.
    Semenov, A. N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (17)
  • [25] Anomalous Confined Diffusion of Nanoparticles in Polymer Solutions
    Zheng, Ping
    Xue, Chun-Dong
    Qin, Kai-Rong
    [J]. 2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1523 - 1528
  • [26] ANOMALOUS POLYMER DIFFUSION BETWEEN LONG RODS
    BAUMGARTNER, A
    MOON, M
    [J]. EUROPHYSICS LETTERS, 1989, 9 (03): : 203 - 208
  • [27] Anomalous surfactant diffusion in a living polymer system
    Angelico, Ruggero
    Ceglie, Andrea
    Olsson, Ulf
    Palazzo, Gerardo
    Ambrosone, Luigi
    [J]. PHYSICAL REVIEW E, 2006, 74 (03):
  • [28] Molecular cloud abundances and anomalous diffusion
    Marschalko, G.
    Forgacs-Dajka, E.
    Petrovay, K.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2007, 328 (08) : 871 - 874
  • [29] Possible explanation of the Λ-shape anomaly in polymer surface diffusion
    Mukherji, Debashish
    Muser, Martin H.
    [J]. PHYSICAL REVIEW E, 2006, 74 (01):
  • [30] An explanation of anomalous diffusion patterns observed in electroactive materials by impedance methods
    Bisquert, J
    Garcia-Belmonte, G
    Pitarch, A
    [J]. CHEMPHYSCHEM, 2003, 4 (03) : 287 - +