A Molecular Explanation for Anomalous Diffusion in Supramolecular Polymer Networks

被引:32
|
作者
Ramirez, Jorge [1 ,2 ]
Dursch, Thomas J. [1 ]
Olsen, Bradley D. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Univ Politecn Madrid, Dept Chem Engn, Madrid, Spain
基金
美国国家科学基金会;
关键词
CROSS-LINKED NETWORKS; PROTEIN HYDROGELS; VISCOELASTIC PROPERTIES; ASSOCIATING POLYMERS; SELF-DIFFUSION; DYNAMICS; SHEAR; RELAXATION; RHEOLOGY; MODULI;
D O I
10.1021/acs.macromol.7b02465
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Recent experiments have revealed that a variety of associative polymers with different architecture (linear and branched) and different nature of the associating interaction (associative protein domains and metal-ligand bonds) exhibit unexplained superdiffusive behavior. Here, Brownian dynamics simulations of unentangled coarse-grained associating star shaped polymers are used to establish a molecular picture of chain dynamics that explains this behavior. Polymers are conceptualized as particles with effective Rouse diffusivities that interact with a mean field background through attachments by stickers at the end of massless springs that represent the arms of the polymer. The simulations reveal three mechanisms of molecular diffusion at length scales much larger than the radius of gyration: hindered diffusion, walking diffusion, and molecular hopping, all of which depend strongly on polymer concentration, arm length, and the association/dissociation rate constants. The molecular model establishes that superdiffusive scaling results primarily from molecular hopping, which only occurs when the kinetics of attachment are slower than the relaxation time of dangling strands. Scaling relationships can be used to identify the range of rate constants over which this behavior is expected. The formation of loops in the networks promotes this superdiffusive scaling by reducing the total number of arms that must detach in order for a hopping step to occur.
引用
收藏
页码:2517 / 2525
页数:9
相关论文
共 50 条
  • [1] Anomalous diffusion of ideal polymer networks
    Licinio, P
    Teixeira, AV
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 631 - 634
  • [2] Event Detection in Molecular Communication Networks With Anomalous Diffusion
    Mai, Trang C.
    Egan, Malcolm
    Duong, Trung Q.
    Di Renzo, Marco
    [J]. IEEE COMMUNICATIONS LETTERS, 2017, 21 (06) : 1249 - 1252
  • [3] Experimental investigation of anomalous molecular probe diffusion in entangled polymer melts
    Simavilla, D. Nieto
    Ramakrishnan, V
    Smoukov, S. K.
    Venerus, D. C.
    [J]. SOFT MATTER, 2022, 18 (33) : 6200 - 6208
  • [4] Anomalous diffusion in polymer melts
    Paul, W
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 59 - 66
  • [5] Anomalous diffusion in polymer monolayers
    Semenov, A. N.
    Meyer, H.
    [J]. SOFT MATTER, 2013, 9 (16) : 4249 - 4272
  • [6] Applications of supramolecular polymer networks
    O'Donnell, A.D.
    Salimi, S.
    Hart, L.R.
    Babra, T.S.
    Greenland, B.W.
    Hayes, W.
    [J]. Reactive and Functional Polymers, 2022, 172
  • [7] Applications of supramolecular polymer networks
    O'Donnell, A. D.
    Salimi, S.
    Hart, L. R.
    Babra, T. S.
    Greenland, B. W.
    Hayes, W.
    [J]. REACTIVE & FUNCTIONAL POLYMERS, 2022, 172
  • [8] Anomalous diffusion of gels and networks
    Licinio, P
    Teixeira, AV
    [J]. SLOW DYNAMICS IN COMPLEX SYSTEMS, 1999, 469 : 156 - 157
  • [9] Anomalous diffusion on the percolating networks
    Liu, D
    Li, HQ
    Chang, FX
    Lin, LB
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (02): : 139 - 144
  • [10] Anomalous diffusion on the Hanoi networks
    Boettcher, S.
    Goncalves, B.
    [J]. EPL, 2008, 84 (03)