Misclassification error in satellite imagery data: Implications for empirical land-use models

被引:5
|
作者
Sandler, Austin M. [1 ]
Rashford, Benjamin S. [2 ]
机构
[1] Univ Maryland, Dept Geog Sci, 2181 LeFrak Hall,7251 Preinkert Dr, College Pk, MD 20740 USA
[2] Univ Wyoming, Dept Agr & Appl Econ, Dept 3354,1000 E Univ Ave, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
Land-use; Econometrics; Misclassification error; Satellite imagery data; Northern Great Plains; ECONOMETRIC-ANALYSIS; GRASSLAND CONVERSION; COVER-CHANGE; AGRICULTURAL POLICIES; LANDSCAPE INDICATORS; ACCURACY ASSESSMENT; URBAN SPRAWL; DEFORESTATION; ECONOMICS; IMPACTS;
D O I
10.1016/j.landusepol.2018.04.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Satellite-based land-use data sets are providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parametei estimates in typical land-use models. Results from satellite imagery data from the Northern Great Plains indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy in ference. At the levels of misclassification typical in current satellite imagery datasets (e.g., 35%), ignoring misclassification can lead to systematically erroneous land-use policies.
引用
收藏
页码:530 / 537
页数:8
相关论文
共 50 条