Improving Multi-objective Evolutionary Influence Maximization in Social Networks

被引:12
|
作者
Bucur, Doina [1 ]
Iacca, Giovanni [2 ]
Marcelli, Andrea [3 ]
Squillero, Giovanni [3 ]
Tonda, Alberto [4 ]
机构
[1] Univ Twente, EEMCS, Zilverling 2027, NL-7500 AE Enschede, Netherlands
[2] Rhein Westfal TH Aachen, Integrated Signal Proc Syst, D-52056 Aachen, Germany
[3] Politecn Torino, DAUIN, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[4] INRA, UMR GMPA 782, Ave Lucien Bretignieres, F-78850 Thiverval Grignon, France
关键词
Influence maximization; Social network Multi-objective evolutionary algorithms; Seeding;
D O I
10.1007/978-3-319-77538-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of social networks, maximizing influence means contacting the largest possible number of nodes starting from a set of seed nodes, and assuming a model for influence propagation. The real-world applications of influence maximization are of uttermost importance, and range from social studies to marketing campaigns. Building on a previous work on multi-objective evolutionary influence maximization, we propose improvements that not only speed up the optimization process considerably, but also deliver higher-quality results. State-of-the-art heuristics are run for different sizes of the seed sets, and the results are then used to initialize the population of a multi-objective evolutionary algorithm. The proposed approach is tested on three publicly available real-world networks, where we show that the evolutionary algorithm is able to improve upon the solutions found by the heuristics, while also converging faster than an evolutionary algorithm started from scratch.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [41] Expensive Multi-Objective Evolutionary Algorithm with Multi-Objective Data Generation
    Li J.-Y.
    Zhan Z.-H.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (05): : 896 - 908
  • [42] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [43] Improving a multi-objective evolutionary algorithm to discover quantitative association rules
    Martinez-Ballesteros, M.
    Troncoso, A.
    Martinez-Alvarez, F.
    Riquelme, J. C.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 49 (02) : 481 - 509
  • [44] Improving a multi-objective evolutionary algorithm to discover quantitative association rules
    M. Martínez-Ballesteros
    A. Troncoso
    F. Martínez-Álvarez
    J. C. Riquelme
    [J]. Knowledge and Information Systems, 2016, 49 : 481 - 509
  • [45] Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene Expression Data
    Brizuela, Carlos A.
    Luna-Taylor, Jorge E.
    Martinez-Perez, Israel
    Guillen, Hugo A.
    Rodriguez, David O.
    Beltran-Verdugo, Armando
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 221 - 228
  • [46] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    [J]. Soft Computing, 2017, 21 : 5883 - 5891
  • [47] Improving an evolutionary multi-objective approach for optimizing railway energy consumption
    Lejeune, Aurelien
    Chevrier, Remy
    Rodriguez, Joaquin
    [J]. TRANSPORT RESEARCH ARENA 2012, 2012, 48 : 3124 - 3133
  • [48] Influence Maximization in Multi-Relational Social Networks
    Wang, Wei
    Yang, Haili
    Lu, Yuanfu
    Zou, Yuanhang
    Zhang, Xu
    Guo, Shuting
    Lin, Leyu
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4193 - 4202
  • [49] Improving Multi-Objective Optimization Methods of Water Distribution Networks
    Kidanu, Rahel Amare
    Cunha, Maria
    Salomons, Elad
    Ostfeld, Avi
    [J]. WATER, 2023, 15 (14)
  • [50] Social influence under improved multi-objective metaheuristics
    Riquelme, Fabian
    Munoz, Francisco
    Olivares, Rodrigo
    [J]. PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2021, 2021, : 479 - 486