A sharpening of the Parikh mapping

被引:90
|
作者
Mateescu, A
Salomaa, A
Salomaa, K
Yu, S
机构
[1] Univ Bucharest, Fac Math, Bucharest, Romania
[2] Turku Ctr Comp Sci, Turku 20520, Finland
[3] Queens Univ, Dept Comp & Informat Sci, Kingston, ON K7L 3N6, Canada
[4] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
来源
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS | 2001年 / 35卷 / 06期
关键词
formal languages; Parikh mapping; scattered subwords;
D O I
10.1051/ita:2001131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a sharpening of the Parikh mapping and investigate its basic properties. The new mapping is based on square matrices of a certain form. The classical Parikh vector appears in such a matrix as the second diagonal. However, the matrix product gives more information about a word than the Parikh vector. We characterize the matrix products and establish also an interesting interconnection between mirror images of words and inverses of matrices.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [31] An assessment of pan-sharpening algorithms for mapping mangrove ecosystems: a hybrid approach
    Shahzad, Naeem
    Ahmad, Sajid Rashid
    Ashraf, Salman
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (06) : 1579 - 1599
  • [32] Enriching Parikh matrix mappings
    Atanasiu, Adrian
    Atanasiu, Radu-Florian
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) : 511 - 521
  • [33] Algebraic aspects of Parikh matrices
    Mateescu, A
    THEORY IS FOREVER: ESSAYS DEDICATED TO ARTO SALOMAA ON THE OCCASION OF HIS 70TH BIRTHDAY, 2004, 3113 : 170 - 180
  • [34] On a conjecture about Parikh matrices
    Teh, Wen Chean
    Atanasiu, Adrian
    THEORETICAL COMPUTER SCIENCE, 2016, 628 : 30 - 39
  • [35] A STRONGER VERSION OF PARIKH THEOREM
    UYEN, PH
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 452 : 485 - 491
  • [36] The Algebraic Theory of Parikh Automata
    Cadilhac, Michael
    Krebs, Andreas
    McKenzie, Pierre
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (05) : 1241 - 1268
  • [37] Parikh Matrices and Istrail Morphism
    Subramanian, K. G.
    Isawasan, Pradeep
    Venkat, Ibrahim
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2013, 9 (01): : 5 - 9
  • [38] OBITUARY Balkrishna Kantilal Parikh
    Menon, Rajgopalan
    BMJ-BRITISH MEDICAL JOURNAL, 2022, 378
  • [39] In Regard to Parikh et al
    1600, Elsevier Inc. (99):
  • [40] The Algebraic Theory of Parikh Automata
    Michaël Cadilhac
    Andreas Krebs
    Pierre McKenzie
    Theory of Computing Systems, 2018, 62 : 1241 - 1268