Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light

被引:106
|
作者
Hu, Xiaonan [1 ]
Zhang, Yao [1 ]
Wang, Boji [1 ]
Li, Hongjing [1 ]
Dong, Wenbo [1 ]
机构
[1] Fudan Univ, Dept Environm Engn Sci, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
关键词
g-C3N4/BiOClxI1-x; Polyvinylpyrrolidone; Oxygen vacancy-rich; Enhanced photocatalytic degradation; Visible and simulated solar light; DOMINANT; 001; FACETS; BISPHENOL-A; BIOI/BIOCL COMPOSITES; FORMATION MECHANISM; SURFACE-CHARGE; DRIVEN; BIOCL; WATER; HETEROJUNCTION; PHOTOACTIVITY;
D O I
10.1016/j.apcatb.2019.117789
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel oxygen vacancy-rich g-C3N4/BiOClxI1-x heterostructure nanosheet (BCI-CN-P) is successfully prepared by a facile coprecipitation method with the assistance of surfactant polyvinylpyrrolidone (PVP) for enhanced photocatalytic degradation of organic contaminants. Field Emission Scanning Electron Microscope and Field Emission Transmission Electron Microscope detect the formation of heterostructure, while X-ray photoelectron spectroscopy and electron spin resonance demonstrate that the surface has rich oxygen vacancies. Under visible light irradiation, BCI-CN-P (g-C3N4/BiOClxI1-x, with PVP) exhibits 100% photocatalytic degradation efficiency of colorless bisphenol A (BPA, 10 mg L -1 ) within 40 min, while CN (pure g-C3N4), BCI (pure BiOClxI1-x), BC-CN-P (g-C 3 N 4 /BiOCl with PVP) show negligible decomposition ability, and BCI-CN (g-C3N4/BiOClxI1-x without PVP) displays 61.2% removal efficiency for BPA after 1 h. Similarly, BCI-CN-P shows outstanding photocatalytic performance under simulated solar light, and the apparent reaction rate constant for BPA degradation is 0.2245 min(-1), which is around 89.1, 15.2, 5.6 and 18.6 times as that of CN, BCI, BCI-CN and BC-CN-P, respectively. Furthermore, the photocatalytic mechanism of BCI-CN-P is revealed, the introduction of iodine and PVP enhance the visible light absorption ability and the formation of rich oxygen vacancies, and the synergistic effect between the g-C3N4/BiOClxI1-x heterojunction and oxygen vacancies facilitates the effective separation and transfer of photogenerated electron-hole pairs. O-2- radicals and photogenerated holes are confirmed to be main active species to decompose organic pollutants continuously during photocatalytic degradation process. The BCICN-P catalyst is excellent and applicable in the broad pH range from 5.0 to 9.0. Also, BCI-CN-P presents outstanding mineralization capability and bio-friendliness for potential practical application.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Enhanced photocatalytic activity of ZnSe QDs/g-C3N4 composite for Ceftriaxone sodium degradation under visible light
    Zhao, Yanyan
    Wang, Yongbo
    Shi, Huanxian
    Liu, Enzhou
    Fan, Jun
    Hu, Xiaoyun
    MATERIALS LETTERS, 2018, 231 : 150 - 153
  • [32] Facile synthesis of porous isotype heterojunction g-C3N4 for enhanced photocatalytic degradation of RhB under visible light
    Liao, Gang
    Yao, Wu
    DIAMOND AND RELATED MATERIALS, 2022, 128
  • [33] ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation
    Ke, Yingchang
    Guo, Hongxu
    Wang, Dongfang
    Chen, Jianhua
    Weng, Wen
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (20) : 2473 - 2482
  • [34] Photocatalytic degradation of organic micropollutants under UV-A and visible light irradiation by exfoliated g-C3N4 catalysts
    Antonopoulou, Maria
    Bika, Panagiota
    Papailias, Ilias
    Zervou, Sevasti-Kiriaki
    Vrettou, Androniki
    Efthimiou, Ioanna
    Mitrikas, George
    Ioannidis, Nikolaos
    Trapalis, Christos
    Dallas, Panagiotis
    Vlastos, Dimitris
    Hiskia, Anastasia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 892
  • [35] Synthesizing crystalline g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light
    Zhu, Linyu
    Zhang, Wenchi
    Shi, Guang
    Tian, Xu
    Tang, Peisong
    Xia, Pengfei
    CRYSTENGCOMM, 2024, 26 (05) : 599 - 603
  • [36] TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation
    Wu, Yongmei
    Tao, Li
    Zhao, Jie
    Yue, Xiu
    Deng, Wenye
    Li, Yingxuan
    Wang, Chuanyi
    RESEARCH ON CHEMICAL INTERMEDIATES, 2016, 42 (04) : 3609 - 3624
  • [37] TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation
    Yongmei Wu
    Li Tao
    Jie Zhao
    Xiu Yue
    Wenye Deng
    Yingxuan Li
    Chuanyi Wang
    Research on Chemical Intermediates, 2016, 42 : 3609 - 3624
  • [38] Enhanced visible-light degradation of organic dyes via porous g-C3N4
    Kumaravel, Sabarish
    Manoharan, Mathankumar
    Haldorai, Yuvaraj
    Rajendra Kumar, R. T.
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2022, 197 (03) : 200 - 208
  • [39] Ag/g-C3N4 composite nanosheets: Synthesis and enhanced visible photocatalytic activities
    Li, Zhenjiang
    Wang, Junhu
    Zhu, Kaixing
    Ma, Fenglin
    Meng, Alan
    MATERIALS LETTERS, 2015, 145 : 167 - 170
  • [40] Ag/AgBr/g-C3N4: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light
    Cao, Jing
    Zhao, Yijie
    Lin, Haili
    Xu, Benyan
    Chen, Shifu
    MATERIALS RESEARCH BULLETIN, 2013, 48 (10) : 3873 - 3880