Comparing the structures of mathematical objects

被引:2
|
作者
Wilhelm, Isaac [1 ]
机构
[1] Rutgers State Univ, 106 Somerset St,5th Floor, New Brunswick, NJ 08901 USA
关键词
Structure; Metaphysics; Philosophy of science; Philosophy of physics; Group theory;
D O I
10.1007/s11229-021-03072-0
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
A popular method for comparing the structures of mathematical objects, which I call the 'subset approach', says that X has more structure than Y just in case X's automorphisms form a proper subset of Y's automorphisms. This approach is attractive, in part, because it seems to yield the right results in some comparisons of spacetime structure. But as I show, it yields the wrong results in a number of other cases. The problem is that the subset approach compares structure using automorphism sets. So a different approach is needed: structure should be compared using automorphism groups.
引用
收藏
页码:6357 / 6369
页数:13
相关论文
共 50 条
  • [41] NUMBERS, OBJECTS AND STRUCTURES
    RODRIGUEZCONSUEGRA, F
    CRITICA-REVISTA HISPANOAMERICANA DE FILOSOFIA, 1991, 23 (68): : 7 - 86
  • [42] Data structures as objects
    Negus, J
    DR DOBBS JOURNAL, 2000, 25 (05): : 12 - 12
  • [43] Data structures as objects
    Soukup, J
    DR DOBBS JOURNAL, 1999, 24 (10): : 21 - +
  • [44] A New Approach for Comparing Fuzzy Objects
    Bashon, Yasmina
    Neagu, Daniel
    Ridley, Mick J.
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 115 - 125
  • [45] Method of comparing two collective Objects
    Lipmann, Otto
    ZEITSCHRIFT FUR PSYCHOLOGIE UND PHYSIOLOGIE DER SINNESORGANE, 1908, 48 : 421 - 431
  • [46] Aristotle on the Objects of Natural and Mathematical Sciences
    Mendelsohn, Joshua
    ANCIENT PHILOSOPHY TODAY: DIALOGOI, 2023, 5 (02): : 98 - 122
  • [47] Intuition and idealities: Phenomenology of mathematical objects
    Leclercq, Bruno
    PHILOSOPHIA MATHEMATICA, 2021, 29 (03) : 439 - 444
  • [48] Mathematical objects, semiotic representations and senses
    Rojas Garzon, Pedro Javier
    ENSENANZA DE LAS CIENCIAS, 2015, 33 (01): : 151 - 165
  • [49] Can mathematical objects be causally efficacious?
    Park, Seungbae
    INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 2019, 62 (03): : 247 - 255
  • [50] The indispensability argument and the nature of mathematical objects
    Plebani, Matte
    THEORIA-REVISTA DE TEORIA HISTORIA Y FUNDAMENTOS DE LA CIENCIA, 2018, 33 (02): : 249 - 263