Magnetic catalysis and the chiral condensate in holographic QCD

被引:17
|
作者
Ballon-Bayona, Alfonso [1 ]
Shock, Jonathan P. [2 ,3 ]
Zoakos, Dimitrios [4 ,5 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Cape Town, Dept Math & Appl Math, Private Bag, ZA-7700 Rondebosch, South Africa
[3] Natl Inst Theoret Phys, Private Bag X1, Matieland, South Africa
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Athens 15784, Greece
[5] Hellen Amer Univ, 436 Amherst St, Nashua, NH 03063 USA
关键词
Gauge-gravity correspondence; Spontaneous Symmetry Breaking; Tachyon Condensation; LARGE-N LIMIT; SYMMETRY-BREAKING; FIELD-THEORIES; YANG-MILLS; PHYSICS; SPACE;
D O I
10.1007/JHEP10(2020)193
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the effect of a non-zero magnetic field on the chiral condensate using a holographic QCD approach. We extend the model proposed by Iatrakis, Kiritsis and Paredes in [1] that realises chiral symmetry breaking dynamically from 5d tachyon condensation. We calculate the chiral condensate, magnetisation and susceptibilities for the confined and deconfined phases. The model leads, in the probe approximation, to magnetic catalysis of chiral symmetry breaking in both confined and deconfined phases. In the chiral limit, m(q) = 0, we find that in the deconfined phase a sufficiently strong magnetic field leads to a second order phase transition from the chirally restored phase to a chirally broken phase. The transition becomes a crossover as the quark mass increases. Due to a scaling in the temperature, the chiral transition will also be interpreted as a transition in the temperature for fixed magnetic field. We elaborate on the relationship between the chiral condensate, magnetisation and the (magnetic) free energy density. We compare our results at low and moderate temperatures with lattice QCD results.
引用
收藏
页数:54
相关论文
共 50 条
  • [31] Chiral separation effect from holographic QCD
    Domingo Gallegos
    Matti Järvinen
    Eamonn Weitz
    Journal of High Energy Physics, 2024 (11)
  • [32] Baryon and chiral symmetry breaking in holographic QCD
    Gorsky, Alexander
    Gudnason, Sven Bjarke
    Krikun, Alexander
    PHYSICAL REVIEW D, 2015, 91 (12)
  • [33] A COLOR MAGNETIC VORTEX CONDENSATE IN QCD
    AMBJORN, J
    OLESEN, P
    NUCLEAR PHYSICS B, 1980, 170 (02) : 265 - 282
  • [34] Dirac spectrum and chiral condensate for QCD at fixed θ angle
    Kieburg, M.
    Verbaarschot, J. J. M.
    Wettig, T.
    PHYSICAL REVIEW D, 2019, 99 (07):
  • [35] THE SCALING OF THE QCD QUENCHED CHIRAL CONDENSATE AT BETA=6.0
    SALINA, G
    VLADIKAS, A
    PHYSICS LETTERS B, 1990, 249 (01) : 119 - 124
  • [36] THE CHIRAL CONDENSATE IN SU(2) QCD AT FINITE DENSITY
    BAILLIE, CF
    BOWLER, KC
    GIBBS, PE
    BARBOUR, IM
    RAFIQUE, M
    PHYSICS LETTERS B, 1987, 197 (1-2) : 195 - 199
  • [37] Large N QCD - Continuum reduction and chiral condensate
    Narayanan, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (19): : 4497 - 4502
  • [38] An estimate of the chiral condensate from unquenched lattice QCD
    McNeile, C
    PHYSICS LETTERS B, 2005, 619 (1-2) : 124 - 128
  • [39] Noise and ultraviolet divergences in the dynamics of the chiral condensate in QCD
    Krein, G.
    XIII MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2012, 378
  • [40] The domain wall fermion chiral condensate in quenched QCD
    Chen, P
    Christ, N
    Fleming, G
    Kaehler, A
    Malureanu, C
    Mawhinney, R
    Siegert, G
    Sui, C
    Vranas, P
    Zhestkov, Y
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 207 - 209