Layer-dependent ultrafast dynamics of α-In2Se3 nanoflakes

被引:23
|
作者
Wang, Rui [1 ]
Wang, Ting [1 ]
Zhou, Yu [2 ]
Wu, Yanling [3 ]
Zhang, Xiaoxian [1 ]
He, Xiaoyue [1 ]
Peng, Hailin [2 ]
Zhao, Jimin [3 ]
Qiu, Xiaohui [1 ,4 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
[2] Peking Univ, State Key Lab Struct Chem Unstable & Stable Speci, Coll Chem & Mol Engn, Ctr Nanochem,BNLMS, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
alpha-In2Se3; layer-dependent carrier dynamics; ultrahigh photoresponsivity; photogating effect; contact resistance; CARRIER DYNAMICS; PHOTOCURRENT GENERATION; IN2SE3; BAND; MECHANISMS; GAIN;
D O I
10.1088/2053-1583/ab1fb4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photodetectors based on a-phase In2Se3 ultrathin films demonstrate unusually high photoresponsivity comparing to those based on other two-dimensional (2D) materials, such as MoS2. To understand the underlying mechanism, we investigate the ultrafast dynamics of In2Se3 ultrathin films ranging from 11 nm to 40 nm on mica and Au substrates, respectively, analogous to the practical layout of a photodetector. Our results show that the carrier lifetime of a-phase In2Se3 on mica is nearly independent of thickness and comparable to that of MoS2, and the efficient charge carrier separation occurs on Au substrate. Because all of the key parameters of In2Se3 nanoflakes that determine its photoresponsive behavior are of similar values to those of MoS2, we suggest that the interface effect, i.e. photogating effect and contact resistance, should be responsible for the dramatic photoresponsivity reported for field-effect transistor-type optoelectronic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] PHASE TRANSITION OF IN2SE3
    MIYAZAWA, H
    SUGAIKE, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1957, 12 (03) : 312 - 312
  • [32] Crystal structure of κ-In2Se3
    Jasinski, J
    Swider, W
    Washburn, J
    Liliental-Weber, Z
    Chaiken, A
    Nauka, K
    Gibson, GA
    Yang, CC
    APPLIED PHYSICS LETTERS, 2002, 81 (23) : 4356 - 4358
  • [33] The α-In2Se3 THz Photodetector
    Chen, Jing
    Wu, Fan
    Li, Ping
    Hu, Jianguo
    Tian, He
    Wu, Xiao-Ming
    Yang, Yi
    Ren, Tian-Ling
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4371 - 4376
  • [34] Electrical properties of In2Se3 single crystals and photosensitivity of Al/In2Se3 Schottky barriers
    Bodnar, I. V.
    Ilchuk, G. A.
    Petrus', R. Yu.
    Rud', V. Yu.
    Rud', Yu. V.
    Serginov, M.
    SEMICONDUCTORS, 2009, 43 (09) : 1138 - 1141
  • [35] Layer-by-Layer Assembly of Two-Dimensional Colloidal Cu2Se Nanoplates and Their Layer-Dependent Conductivity
    Zhu, Yue
    Peng, Lele
    Zhu, Weinan
    Akinwande, Deji
    Yu, Guihua
    CHEMISTRY OF MATERIALS, 2016, 28 (12) : 4307 - 4314
  • [36] Electrodeposition of In2Se3 Using Potential Pulse Atomic Layer Deposition
    Czerniawski, Justin M.
    Stickney, John L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (29): : 16162 - 16167
  • [37] PHASE CHANGES IN IN2SE3
    NEWMAN, PC
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1959, 299 (3-4): : 158 - 159
  • [38] Electrical properties of In2Se3 single crystals and photosensitivity of Al/In2Se3 Schottky barriers
    I. V. Bodnar
    G. A. Ilchuk
    R. Yu. Petrus’
    V. Yu. Rud’
    Yu. V. Rud’
    M. Serginov
    Semiconductors, 2009, 43 : 1138 - 1141
  • [39] Photosensitivity of In2Se3/As2Se3 barrier structures
    Andriesh, AM
    Iovu, MS
    Khanchevskaya, EG
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1995, 21 (14): : 88 - 91
  • [40] Revealing the Substrate Dependent Ultrafast Phonon Dynamics in Bi2Se3 Thin Films
    Saini, Saurabh K.
    Tailor, Naveen Kumar
    Sharma, Prince
    Tyagi, Lavi
    Vashistha, Nikita
    Yadav, Rimjhim
    Chaudhary, Amit Kumar
    Satapathi, Soumitra
    Kumar, Mahesh
    ADVANCED MATERIALS INTERFACES, 2023, 10 (03)