Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >10(6) pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.