Deep learning-assisted comparative analysis of animal trajectories with DeepHL

被引:31
|
作者
Maekawa, Takuya [1 ]
Ohara, Kazuya [1 ]
Zhang, Yizhe [1 ]
Fukutomi, Matasaburo [2 ]
Matsumoto, Sakiko [3 ,4 ]
Matsumura, Kentarou [4 ]
Shidara, Hisashi [5 ]
Yamazaki, Shuhei J. [6 ]
Fujisawa, Ryusuke [7 ]
Ide, Kaoru [8 ]
Nagaya, Naohisa [9 ]
Yamazaki, Koji [10 ]
Koike, Shinsuke [11 ]
Miyatake, Takahisa [4 ]
Kimura, Koutarou D. [6 ,12 ]
Ogawa, Hiroto [5 ]
Takahashi, Susumu [8 ]
Yoda, Ken [3 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
[2] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido, Japan
[3] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan
[4] Okayama Univ, Grad Sch Environm & Life Sci, Okayama, Japan
[5] Hokkaido Univ, Dept Biol Sci, Sapporo, Hokkaido, Japan
[6] Osaka Univ, Grad Sch Sci, Osaka, Japan
[7] Kyushu Inst Technol, Grad Sch Comp Sci & Syst Engn, Iizuka, Fukuoka, Japan
[8] Doshisha Univ, Grad Sch Brain Sci, Kyotanabe, Japan
[9] Kyoto Sangyo Univ, Dept Intelligent Syst, Kyoto, Japan
[10] Tokyo Univ Agr, Dept Forest Sci, Tokyo, Japan
[11] Tokyo Univ Agr & Technol, Grad Sch Agr, Tokyo, Japan
[12] Nagoya City Univ, Grad Sch Sci, Nagoya, Aichi, Japan
关键词
NEURAL-NETWORKS; GO; BEHAVIORS; DEATH; MODEL; GAME;
D O I
10.1038/s41467-020-19105-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals. Comparative analysis of animal behaviour using locomotion data such as GPS data is difficult because the large amount of data makes it difficult to contrast group differences. Here the authors apply deep learning to detect and highlight trajectories characteristic of a group across scales of millimetres to hundreds of kilometres.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Deep Learning-Assisted Demodulation for TeraHertz Communications Under Hybrid Distortions
    He, Dongxuan
    Wang, Zhaocheng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) : 325 - 329
  • [42] Explainable Deep Learning-Assisted Photochromic Sensor for β-Lactam Antibiotic Identification
    Tan, Xiaoqing
    Tang, Yongtao
    Yang, Tingting
    Dai, Guoliang
    Ye, Changqing
    Meng, Jianxin
    Li, Fengyu
    ANALYTICAL CHEMISTRY, 2023, 95 (06) : 3309 - 3316
  • [43] Deep learning-assisted fully automatic fiber tracking for tremor treatment
    Haensch, Annika
    Jenne, Juergen W.
    Upadhyay, Neeraj
    Schmeel, Carsten
    Purrer, Veronika
    Wuellner, Ullrich
    Klein, Jan
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [44] Deep learning-assisted intelligent wearable precise cardiovascular monitoring system
    Zhai, Wei
    Dai, Kun
    Liu, Hu
    Liu, Chuntai
    Shen, Changyu
    SCIENCE BULLETIN, 2024, 69 (09) : 1176 - 1178
  • [45] Deep learning-assisted Raman spectroscopy for automated identification of specific minerals
    Dong, Wangtong
    Qin, Mengjiao
    Wu, Sensen
    Hu, Linshu
    Rao, Can
    Du, Zhenhong
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 333
  • [46] Deep Learning-Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model
    Park, Allison
    Chute, Chris
    Rajpurkar, Pranav
    Lou, Joe
    Ball, Robyn L.
    Shpanskaya, Katie
    Jabarkheel, Rashad
    Kim, Lily H.
    McKenna, Emily
    Tseng, Joe
    Ni, Jason
    Wishah, Fidaa
    Wittber, Fred
    Hong, David S.
    Wilson, Thomas J.
    Halabi, Safwan
    Basu, Sanjay
    Patel, Bhavik N.
    Lungren, Matthew P.
    Ng, Andrew Y.
    Yeom, Kristen W.
    JAMA NETWORK OPEN, 2019, 2 (06) : e195600
  • [47] Deep learning-assisted wavefront correction with sparse data for holographic tomography
    Lin, Li-Chien
    Huang, Chung-Hsuan
    Chen, Yi-Fan
    Chu, Daping
    Cheng, Chau-Jern
    OPTICS AND LASERS IN ENGINEERING, 2022, 154
  • [48] Explainable Deep Learning-Assisted Fluorescence Discrimination for Aminoglycoside Antibiotic Identification
    Tan, Xiaoqing
    Liang, Yongpeng
    Ye, Yingying
    Liu, Zhihao
    Meng, Jianxin
    Li, Fengyu
    ANALYTICAL CHEMISTRY, 2022, 94 (02) : 829 - 836
  • [49] Deep Residual Learning-Assisted Channel Estimation in Ambient Backscatter Communications
    Liu, Xuemeng
    Liu, Chang
    Li, Yonghui
    Vucetic, Branka
    Ng, Derrick Wing Kwan
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (02) : 339 - 343
  • [50] Deep Learning-Assisted OFDM Channel Estimation and Signal Detection Technology
    Li, Jun
    Zhang, Zhichen
    Wang, Yukai
    He, Bo
    Zheng, Wenjing
    Li, Mingming
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1347 - 1351