Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach

被引:28
|
作者
Latysheva, Anna [1 ]
Emblem, Kyrre Eeg [2 ]
Brandal, Petter [3 ]
Vik-Mo, Einar Osland [4 ,5 ]
Pahnke, Jens [6 ,7 ,8 ]
Roysland, Kjetil [9 ]
Hald, John K. [1 ]
Server, Andres [1 ]
机构
[1] Natl Hosp Norway, Dept Radiol, Oslo Univ Hosp, 4950 Nydalen, N-0424 Oslo, Norway
[2] Natl Hosp Norway, Dept Diagnost Phys, Oslo Univ Hosp, Oslo, Norway
[3] Natl Hosp Norway, Dept Oncol, Oslo Univ Hosp, Oslo, Norway
[4] Natl Hosp Norway, Dept Neurosurg, Oslo Univ Hosp, Oslo, Norway
[5] Univ Oslo, Fac Med, Oslo, Norway
[6] Univ Oslo, Dept Neuro Pathol, Translat Neurodegenerat Res & Neuropathol Lab, Oslo, Norway
[7] Oslo Univ Hosp, Oslo, Norway
[8] Univ Lubeck, LIED, Lubeck, Germany
[9] Univ Oslo, Inst Basic Med Sci, Dept Biostat, Oslo, Norway
基金
欧盟地平线“2020”;
关键词
Diffuse glioma; Perfusion MRI; Diffusion MRI; ENHANCED MR; GRADE; PERFUSION; GLIOMA; DIAGNOSIS; DIFFERENTIATION; ASTROCYTOMAS; PREDICTION; MUTATIONS; 1P/19Q;
D O I
10.1007/s00234-019-02173-5
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
According to the revised World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) of 2016, oligodendrogliomas are now defined primarily by a specific molecular signature (presence of IDH mutation and 1p19q codeletion). The purpose of our study was to assess the value of dynamic susceptibility contrast MR imaging (DSC-MRI) and diffusion-weighted imaging (DWI) to characterize oligodendrogliomas and to distinguish them from astrocytomas. Seventy-one adult patients with untreated WHO grade II and grade III diffuse infiltrating gliomas and known 1p/19q codeletion status were retrospectively identified and analyzed using relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC) maps based on whole-tumor volume histograms. The Mann-Whitney U test and logistic regression were used to assess the ability of rCBV and ADC to differentiate between oligodendrogliomas and astrocytomas both independently, but also related to the WHO grade. Prediction performance was evaluated in leave-one-out cross-validation (LOOCV). Oligodendrogliomas showed significantly higher microvascularity (higher rCBV(Mean) 0.80, p = 0.013) and higher vascular heterogeneity (lower rCBV(Peak) 0.044, p = 0.015) than astrocytomas. Diffuse gliomas with higher cellular density (lower ADC(Mean) 1094 x 10(-6) mm(2)/s, p = 0.009) were more likely to be oligodendrogliomas than astrocytomas. Histogram analysis of rCBV and ADC was able to differentiate between diffuse astrocytomas (WHO grade II) and anaplastic astrocytomas (WHO grade III). Histogram-derived rCBV and ADC parameter may be used as biomarkers for identification of oligodendrogliomas and may help characterize diffuse gliomas based upon their genetic characteristics.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 50 条
  • [1] Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach
    Anna Latysheva
    Kyrre Eeg Emblem
    Petter Brandal
    Einar Osland Vik-Mo
    Jens Pahnke
    Kjetil Røysland
    John K. Hald
    Andrés Server
    [J]. Neuroradiology, 2019, 61 : 545 - 555
  • [2] BRAIN TUMORS A Multimodality Approach with Diffusion-Weighted Imaging, Diffusion Tensor Imaging, Magnetic Resonance Spectroscopy, Dynamic Susceptibility Contrast and Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Brandao, Lara A.
    Shiroishi, Mark S.
    Law, Meng
    [J]. MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2013, 21 (02) : 199 - +
  • [3] MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification
    Elie Diamandis
    Carl Phillip Simon Gabriel
    Urs Würtemberger
    Konstanze Guggenberger
    Horst Urbach
    Ori Staszewski
    Silke Lassmann
    Oliver Schnell
    Jürgen Grauvogel
    Irina Mader
    Dieter Henrik Heiland
    [J]. Journal of Neuro-Oncology, 2018, 139 : 431 - 440
  • [4] MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification
    Diamandis, Elie
    Gabriel, Carl Phillip Simon
    Wuertemberger, Urs
    Guggenberger, Konstanze
    Urbach, Horst
    Staszewski, Ori
    Lassmann, Silke
    Schnell, Oliver
    Grauvogel, Juergen
    Mader, Irina
    Heiland, Dieter Henrik
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2018, 139 (02) : 431 - 440
  • [5] A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR
    McKinley, Richard
    Hung, Fan
    Wiest, Roland
    Liebeskind, David S.
    Scalzo, Fabien
    [J]. FRONTIERS IN NEUROLOGY, 2018, 9
  • [6] Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas
    Law, M.
    Young, R.
    Babb, J.
    Pollack, E.
    Johnson, G.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2007, 28 (04) : 761 - 766
  • [7] Dynamic susceptibility MR perfusion imaging of the brain: not a question of contrast agent molarity
    Panara, Valentina
    Chiacchiaretta, Piero
    Rapino, Matteo
    Maruotti, Valerio
    Parenti, Matteo
    Piccirilli, Eleonora
    Pizzi, Andrea Delli
    Caulo, Massimo
    [J]. NEURORADIOLOGY, 2022, 64 (04) : 685 - 692
  • [8] Dynamic susceptibility MR perfusion imaging of the brain: not a question of contrast agent molarity
    Valentina Panara
    Piero Chiacchiaretta
    Matteo Rapino
    Valerio Maruotti
    Matteo Parenti
    Eleonora Piccirilli
    Andrea Delli Pizzi
    Massimo Caulo
    [J]. Neuroradiology, 2022, 64 : 685 - 692
  • [9] Comparison of brain SPECT and dynamic susceptibility contrast MR imaging in Alzheimer disease
    Renshaw, PF
    English, CD
    Satlin, A
    Lewis, FR
    Harris, GJ
    [J]. RADIOLOGY, 1996, 201 : 13 - 13
  • [10] Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging
    Naveed, Muhammad Atif
    Goyal, Pradeep
    Malhotra, Ajay
    Liu, Xiang
    Gupta, Sonali
    Mangla, Manisha
    Mangla, Rajiv
    [J]. NEURORADIOLOGY JOURNAL, 2018, 31 (04): : 379 - 385