Extended Hellmann-Feynman theorem for degenerate eigenstates

被引:5
|
作者
Zhang, GP [1 ]
George, TF
机构
[1] Indiana State Univ, Dept Phys, Terre Haute, IN 47809 USA
[2] Univ Missouri, Off Chancellor, Dept Chem & Biochem, St Louis, MO 63121 USA
[3] Univ Missouri, Off Chancellor, Dept Phys & Astron, St Louis, MO 63121 USA
关键词
D O I
10.1103/PhysRevB.69.167102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.
引用
收藏
页码:167102 / 1
页数:2
相关论文
共 50 条
  • [1] AN EXTENDED HELLMANN-FEYNMAN THEOREM
    LEVINE, RD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 294 (1439): : 467 - &
  • [2] HELLMANN-FEYNMAN THEOREM IN A LINEAR SUPERPOSITION OF ENERGY EIGENSTATES
    BALASUBRAMANIAN, S
    [J]. AMERICAN JOURNAL OF PHYSICS, 1994, 62 (12) : 1116 - 1117
  • [3] THE EXTENDED HELLMANN-FEYNMAN THEOREM REVISITED
    FERNANDEZ, FM
    [J]. CHEMICAL PHYSICS LETTERS, 1995, 233 (5-6) : 651 - 652
  • [4] A Deduction of the Hellmann-Feynman Theorem
    Chen Feng
    Cheng Wei
    Bao-long Fang
    Hong-yi Fan
    [J]. International Journal of Theoretical Physics, 2020, 59 : 1396 - 1401
  • [5] INTEGRAL HELLMANN-FEYNMAN THEOREM
    KIM, HJ
    PARR, RG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (09): : 2892 - +
  • [6] CONSTRAINTS AND THE HELLMANN-FEYNMAN THEOREM
    EPSTEIN, ST
    [J]. THEORETICA CHIMICA ACTA, 1980, 55 (03): : 251 - 253
  • [7] A Deduction of the Hellmann-Feynman Theorem
    Feng, Chen
    Wei, Cheng
    Fang, Bao-long
    Fan, Hong-yi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (05) : 1396 - 1401
  • [8] Generalization of the Hellmann-Feynman theorem
    Esteve, J. G.
    Falceto, Fernando
    Garcia Canal, C.
    [J]. PHYSICS LETTERS A, 2010, 374 (06) : 819 - 822
  • [9] The nontriviality of the Hellmann-Feynman theorem
    Pupyshev, VI
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 : S267 - S278
  • [10] The Hellmann-Feynman theorem: a perspective
    Peter Politzer
    Jane S. Murray
    [J]. Journal of Molecular Modeling, 2018, 24