Contrasting Physiological and Environmental Controls of Evapotranspiration over Kernza Perennial Crop, Annual Crops, and C4 and Mixed C3/C4 Grasslands

被引:11
|
作者
Sutherlin, Caitlyn E. [1 ]
Brunsell, Nathaniel A. [1 ]
de Oliveira, Gabriel [1 ]
Crews, Timothy E. [2 ]
DeHaan, Lee R. [2 ]
Vico, Giulia [3 ]
机构
[1] Univ Kansas, Dept Geog & Atmospher Sci, 1475 Jayhawk Blvd, Lawrence, KS 66045 USA
[2] Land Inst, 2440 East Well Rd, Salina, KS 67401 USA
[3] Swedish Univ Agr Sci, Dept Crop Prod Ecol, Ulls Vag 16, S-75007 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
perennial agriculture; annual crops; grasslands; water and radiative fluxes; decoupling factor; WATER-USE EFFICIENCY; SOIL-WATER; BIOENERGY CROPS; CARBON; ENERGY; TRANSPIRATION; ATMOSPHERE; CANOPIES; EXCHANGE; SYSTEM;
D O I
10.3390/su11061640
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Perennial grain crops have been suggested as a more sustainable alternative to annual crops. Yet their water use and how they are impacted by environmental conditions have been seldom compared to those of annual crops and grasslands. Here, we identify the dominant mechanisms driving evapotranspiration (ET), and how they change with environmental conditions in a perennial Kernza crop (US-KLS), an annual crop field (US-ARM), a C-4 grassland (US-KON), and a mixed C-3/C-4 grassland (US-KFS) in the Central US. More specifically, we have utilized the omega () decoupling factor, which reflects the dominant mechanisms responsible for the evapotranspiration (ET) of the canopy. Our results showed that the US-ARM site was the most coupled with the lowest decoupling values. We also observed differences in coupling mechanism variables, showing more sensitivity to the water fluctuation variables as opposed to the radiative flux variables. All of the sites showed their lowest value in 2012, the year of the severe drought in the Central US. The 2012 results further indicate the dependence on the water fluctuation variables. This was especially true with the perennial Kernza crop, which displayed much higher soil moisture values. In this regard, we believe that the ability of perennial Kernza to resist water stress and retain higher soil moisture values is both a result of its deeper roots, in addition to its higher value. Through the analysis of both the site comparison and the comparison of the differences in years, we conclude that the perennial Kernza crop (US-KLS) is more similar in its microclimate effects to the C-4 (US-KON) and mixed C-3/C-4 (US-KFS) grassland sites as opposed to its annual counterpart (US-ARM). This has implications for the role of perennial agriculture for addressing agricultural resilience under changing climate conditions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] COMPLEMENT COMPONENTS OF C3 AND C4 IN NIGERIANS
    OLUSI, SO
    MCFARLANE, H
    TROPICAL AND GEOGRAPHICAL MEDICINE, 1975, 27 (03): : 262 - 264
  • [32] The temperature response of C3 and C4 photosynthesis
    Sage, Rowan F.
    Kubien, David S.
    PLANT CELL AND ENVIRONMENT, 2007, 30 (09): : 1086 - 1106
  • [33] FERMENTATION ROUTES TO ...... C3 AND C4 CHEMICALS
    TONG, GE
    CHEMICAL ENGINEERING PROGRESS, 1978, 74 (04) : 70 - 74
  • [34] THE REGULATION OF PHOSPHORIBULOKINASE IN C3 AND C4 PLANTS
    Ruffer-Turner, M. E.
    Bradbeer, J. W.
    PLANT PHYSIOLOGY, 1984, 75 : 52 - 52
  • [35] PEP CARBOXYLASES IN C3 AND C4 PLANTS
    TING, IP
    OSMOND, CB
    PLANT PHYSIOLOGY, 1972, 49 : 58 - &
  • [36] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [37] The Path from C3 to C4 Photosynthesis
    Gowik, Udo
    Westhoff, Peter
    PLANT PHYSIOLOGY, 2011, 155 (01) : 56 - 63
  • [38] REGULATION OF PHOTORESPIRATION IN C3 AND C4 SPECIES
    CHOLLET, R
    OGREN, WL
    BOTANICAL REVIEW, 1975, 41 (02): : 137 - 179
  • [39] C4 nephritic factor in C3 glomerulopathy
    Zhang, Yuzhou
    Nester, Carla M.
    Smith, Richard J. H.
    MOLECULAR IMMUNOLOGY, 2014, 61 (02) : 227 - 227
  • [40] Photorespiration connects C3 and C4 photosynthesis
    Braeutigam, Andrea
    Gowik, Udo
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) : 2953 - 2962