Evaluation of Post-Combustion CO2 Capture Technologies

被引:3
|
作者
Li, Yuan [1 ]
Wang, Qimin [1 ]
Wang, Peibin [1 ]
机构
[1] Shenyang Inst Engn, Shenyang, Peoples R China
来源
关键词
Econamine FG Plus(SM) technology; post-combustion; CO2; capture; cost of electricity (COE);
D O I
10.4028/www.scientific.net/AMR.734-737.1881
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper evaluates the results of two recent studies of advanced amine-based, post-combustion CO2 capture plant designs. The first study was conducted by the IEA Greenhouse Gas R&D Programme (IEA GHG), while the second study was conducted by Parsons for the US DOE's National Energy Technology Laboratory (NETL). Fluor's improved monoethanolamine (MEA) process, known as the Econamine FG Plus(SM) technology, is utilised for both studies. Cost and performance estimates for both pulverized coal and natural gas-fired combined cycle plants are summarized. Differences between the design bases and assumptions for the two studies are discussed. The Econamine FG Plus(SM) technology, as an improved process in amine-based post-combustion CO2 capture described in this paper is leading to lower increases in the cost of electricity (COE). Both the DOE/Parsons and IEA GHG studies show that the increase is now down to 42 to 43% from as high as 60 to 70% indicated from previous studies for PC plants with CO2 capture.
引用
收藏
页码:1881 / 1886
页数:6
相关论文
共 50 条
  • [31] New solvent blends for post-combustion CO2 capture
    Knuutila, Hanna K.
    Rennemo, Rune
    Ciftja, Arlinda F.
    [J]. GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 439 - 452
  • [32] Corrosion in CO2 Post-Combustion Capture with Alkanolamines - A Review
    Kittel, J.
    Gonzalez, S.
    [J]. OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2014, 69 (05): : 915 - 929
  • [33] Dynamic Operation and Simulation of Post-Combustion CO2 Capture
    Gaspar, Jozsef
    Gladis, Arne
    Jorgensen, John Bagterp
    Thomsen, Kaj
    von Solms, Nicolas
    Fosbol, Philip Loldrup
    [J]. 8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 205 - 214
  • [34] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    [J]. 21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [35] Assessment of Membrane Performance for Post-Combustion CO2 Capture
    Liu, Liang
    Lee, Jung Hyun
    Han, Sang Hoon
    Ha, Seong Yong
    Chen, George Q.
    Kentish, Sandra E.
    Yeo, Jeong-Gu
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (01) : 777 - 785
  • [36] Capacity and kinetics of solvents for post-combustion CO2 capture
    Bruder, Peter
    Svendsen, Hallvard F.
    [J]. 6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 45 - 54
  • [37] Ionic liquids as an alternative to CO2 post-combustion capture
    Gimeno, M. P.
    Mayoral, M. C.
    Andres, J. M.
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2013, (30): : 2 - 5
  • [38] Sensor placement for post-combustion CO2 capture plants
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jinfeng
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3454 - 3459
  • [39] Exergoeconomic Analysis of Post-Combustion CO2 Capture Processes
    Schach, M. -O.
    Schneider, R.
    Schramm, H.
    Repke, J. -U.
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 997 - 1002
  • [40] Post-combustion CO2 capture technologies - a review of processes for solvent-based and sorbent-based CO2 capture
    Bhattacharyya, Debangsu
    Miller, David C.
    [J]. CURRENT OPINION IN CHEMICAL ENGINEERING, 2017, 17 : 78 - 92