The use of Rare-Earths (RE) to develop new cast-and wrought-magnesium alloys has acquired increased interest in recent years. The good mechanical properties of Mg-RE alloys at room temperature, and in particular their high strength at relatively high temperatures are at present well-known facts that make them very promising materials for transport applications. In this context, it is necessary to achieve a better understanding of the macro and microstructure evolution of cast Mg-metals directionally solidified. To this end, binary Mg-RE alloys (where RE = Gd, Nd and Y) were cast by permanent mould direct chill casting. This process was performed in a specially optimized laboratory-scale installation in order to ensure the obtention of "clean" ingots, with homogeneous composition and free of porosity and inclusions. A set of different processing conditions was evaluated in order to better control the final microstructure, mainly in terms of grain size, orientation and distribution. The grain selection mechanisms operating during the solidification of these specimens, namely texturization and Columnar to Equiaxed Transition (CET), were characterized and put into relation with the initial composition of the alloy and the imposed cooling conditions.