Bond-order reactive force fields for molecular dynamics simulations of crystalline silica

被引:13
|
作者
Cowen, Benjamin J. [1 ,2 ]
El-Genk, Mohamed S. [1 ,2 ,3 ,4 ]
机构
[1] Univ New Mexico, Inst Space & Nucl Power Studies, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Chem & Biol Engn Dept, Albuquerque, NM 87131 USA
关键词
Bond-order; Variable-charge reactive force fields; MD simulation of silica polymorphs; Alpha-beta transition; Accuracy and transferability; CRYSTALLOGRAPHY OPEN DATABASE; OPEN-ACCESS COLLECTION; REAXFF; QUARTZ; PRESSURE;
D O I
10.1016/j.commatsci.2015.09.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the applicability of the bond-order, variable-charge (BOVC) force fields of the Charge-Optimized Many-Body (COMB10), ReaxFF(SiO)(H2O) , and ReaxFF(SiO)(GSI) , for molecular dynamics (MD) simulations of crystalline SiO2. The calculated lattice constants and densities of the four SiO2 polymorphs, quartz, cristobalite, coesite, and stishovite, are compared to experimental values. Additionally, the calculated pair distribution and bond-angle distribution functions and the alpha-beta transition for quartz, the most stable low-energy polymorph, are compared to experimental results. The simulations with the COMB10 force field accurately predict the properties of the SiO2 polymorphs, except the alpha-cristobalite, and the quartz alpha-beta transition. The results with ReaxFF(SiO)(H2O) and ReaxFF(SiO)(GSI) accurately predict the properties of the SiO2 polymorphs, except the stishovite, but those with ReaxFF(SiO)(H2O) inaccurately predict the quartz alpha-beta transition. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [41] The dynamics of non-crystalline silica: Insight from molecular dynamics computer simulations
    Kob, W
    Horbach, J
    Binder, K
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 1999, 469 : 441 - 451
  • [42] Crack propagation in silica from reactive classical molecular dynamics simulations
    Criscenti, Louise J. (ljcrisc@sandia.gov), 1600, Blackwell Publishing Inc. (101):
  • [43] Exploration of the Dehydrogenation Pathways of Ammonia Diborane and Diammoniate of Diborane by Molecular Dynamics Simulations Using Reactive Force Fields
    Gao, Peng
    Huang, Zhenguo
    Yu, Haibo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (09): : 1698 - 1704
  • [44] Hydration and reaction mechanisms on sodium silicate glass surfaces from molecular dynamics simulations with reactive force fields
    Mahadevan, Thiruvilla S.
    Du, Jincheng
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (06) : 3676 - 3690
  • [45] Crack propagation in silica from reactive classical molecular dynamics simulations
    Rimsza, Jessica M.
    Jones, Reese E.
    Criscenti, Louise J.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (04) : 1488 - 1499
  • [46] Reactive molecular dynamics simulations of Cyclotrimethylenetrinitramine (RDX): effects of electrical fields
    Chen, Fang
    PROCEEDINGS OF THE 2015 INTERNATIONAL FORUM ON ENERGY, ENVIRONMENT SCIENCE AND MATERIALS, 2015, 40 : 127 - 132
  • [47] ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
    Chenoweth, Kimberly
    van Duin, Adri C. T.
    Goddard, William A., III
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05): : 1040 - 1053
  • [48] A Reactive Force Field for Molecular Dynamics Simulations of Glucose in Aqueous Solution
    Cui, Hongqiang
    Lai, Rui
    Yuan, Shengwei
    Liao, Chenyi
    Wang, Anhui
    Li, Guohui
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4286 - 4298
  • [49] A Scalable and Efficient Approach to Polarizable Force Fields in Molecular Dynamics Simulations
    Coles, Jonathan P.
    Masella, Michel
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 675A - 675A
  • [50] Assessment of Biomolecular Force Fields for Molecular Dynamics Simulations in a Protein Crystal
    Hu, Zhongqiao
    Jiang, Jianwen
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (02) : 371 - 380