A new binary to gray code converter based on quantum-dot cellular automata nanotechnology

被引:10
|
作者
Shu, Xiao-bin [1 ]
Li, Li-na [2 ]
Ren, Miao-miao [1 ]
Mohammed, Bayan Omar [3 ]
机构
[1] Luohe Vocat Coll Food, Luohe 462300, Henan, Peoples R China
[2] SongShan ShaoLin WuShu Coll, Dengfeng 452470, Henan, Peoples R China
[3] Univ Human Dev, Informat Technol Dept, Sulaymaniyah, Iraq
关键词
Quantum-dot cellular automata (QCA); Digital communication; Binary; Gray; Code converter; XOR gate; Nanoscale; DESIGN; CIRCUITS; SIMULATION;
D O I
10.1007/s11107-020-00915-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum-dot cellular automata (QCA) is one of the most prominent technologies in nanometer-scale with appreciable reduction of size and power consumption and high switching frequency to overcome the scaling limitations of complementary metal-oxide semiconductor. On the other hand, code converters play a key role in signal processing and efficient network designs. The researchers have focused on emerging nano-devices that can identify errors throughout information transfer. Therefore, in this research, a new QCA-based 4-bit binary to gray converter circuit employing the appropriate configuration of the XOR gate as a basic building block has been suggested. The layout has been generated using the QCADesigner simulation tool to test the functionality of the code converter. The performance results indicated that the proposed converter works properly and has optimum performance parameters such as latency, complexity, and consumed area as compared to the current schemes.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [21] Gray-code adder with parity generator - a novel quantum-dot cellular automata implementation
    Vieira, Luiz G. L.
    Vieira, Luiz F. M.
    Vieira, Marcos A. M.
    Vilela Neto, Omar P.
    IET CIRCUITS DEVICES & SYSTEMS, 2020, 14 (02) : 243 - 250
  • [22] A new phenomenon of quantum-dot cellular automata
    曾令刚
    王庆康
    戴永兵
    Journal of Zhejiang University Science A(Science in Engineering) , 2005, (10) : 1090 - 1094
  • [23] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    MICROELECTRONIC ENGINEERING, 1999, 47 (1-4) : 261 - 263
  • [24] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Zuo, X
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04): : 1394 - 1398
  • [25] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, RK
    Ramasubramaniam, R
    Amlani, I
    Bernstein, GH
    Lent, CS
    CURRENT ISSUES IN HETEROEPITAXIAL GROWTH-STRESS RELAXATION AND SELF ASSEMBLY, 2002, 696 : 221 - 231
  • [26] Quantum-dot cellular automata
    Cole, T
    Lusth, JC
    PROGRESS IN QUANTUM ELECTRONICS, 2001, 25 (04) : 165 - 189
  • [27] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, R
    Timler, J
    Toth, G
    Bernstein, GH
    Lent, CS
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 875 - 880
  • [28] Digital design using Quantum-Dot Cellular Automata (a nanotechnology method)
    Askari, Mehdi
    Taghizadeh, Maryam
    Fardad, Khossro
    2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, 2008, : 952 - +
  • [29] Quantum-dot cellular automata
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
    Microelectron Eng, 1 (261-263):
  • [30] Novel Phase-frequency Detector Based on Quantum-dot Cellular Automata Nanotechnology
    Gholami, M.
    Binaei, R.
    Roshan, M. Gholamnia
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (02): : 269 - 276