Complex quantum Hamilton-Jacobi equation with Bohmian trajectories for wave packet dynamics

被引:21
|
作者
Chou, Chia-Chun [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan
关键词
SCATTERING STATES; MECHANICS; POTENTIALS; MOTION;
D O I
10.1016/j.cplett.2013.11.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The complex quantum Hamilton-Jacobi equation (CQHJE) for the action function is integrated by propagating correlated Bohmian trajectories in real space. We transform the CQHJE into the arbitrary Lagrangian-Eulerian (ALE) version with the grid velocity matching the flow velocity of the probability fluid. The ALE version describes the rate of change in the complex action transported along Bohmian trajectories. The spatial derivatives of the complex action required for the integration of the CQHJE are evaluated with a moving least squares algorithm. The method is applied to a squeezed state in the harmonic potential and to a two-dimensional barrier scattering problem. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 206
页数:4
相关论文
共 50 条
  • [31] SEPARATION OF VARIABLES FOR THE HAMILTON-JACOBI EQUATION ON COMPLEX PROJECTIVE SPACES
    BOYER, CP
    KALNINS, EG
    WINTERNITZ, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (01) : 93 - 109
  • [33] A note on Hamilton-Jacobi's differential equation in dynamics.
    Kunz, J
    PHILOSOPHICAL MAGAZINE, 1928, 5 (27): : 79 - 82
  • [34] VARIATIONAL FORMULATION OF THE HAMILTON-JACOBI EQUATION IN RELATIVISTIC MAGNETOFLUID DYNAMICS
    MERCHES, I
    REVUE ROUMAINE DE PHYSIQUE, 1983, 28 (03): : 187 - 194
  • [35] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [36] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [37] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [38] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [39] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [40] Relations between low-lying quantum wave functions and solutions of the Hamilton-Jacobi equation
    Friedberg, R
    Lee, TD
    Zhao, WQ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (10): : 1195 - 1228