Bosonic oscillator in the presence of minimal length

被引:36
|
作者
Falek, M. [1 ]
Merad, M. [1 ]
机构
[1] Univ Oum El Bouaghi, Dept Phys, Oum El Bouaghi 04000, Algeria
关键词
eigenvalues and eigenfunctions; harmonic oscillators; matrix algebra; quantum gravity; quantum theory; Schrodinger equation; GENERALIZED UNCERTAINTY PRINCIPLE; KEMMER-PETIAU OSCILLATOR; DIRAC-OSCILLATOR; QUANTUM-MECHANICS; STRING THEORY; NONCOMMUTATIVE SPACE; HARMONIC-OSCILLATOR; PLANCK-SCALE; KLEIN-GORDON; EQUATION;
D O I
10.1063/1.3076900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the one-dimensional Bosonic oscillator for spin 1 and spin 0, in the momentum space with the presence of minimal length uncertainty, the energy eigenvalues, and eigenfunctions are then determined for both cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Spinorial Relativistic Particle in the Presence of a Minimal Length
    Zeroual, F.
    Merad, M.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 453 - 456
  • [22] Inflationary universe in the presence of a minimal measurable length
    Mohammadi, A.
    Ali, Ahmed Farag
    Golanbari, T.
    Aghamohammadi, A.
    Saaidi, Kh.
    Faizal, Mir
    ANNALS OF PHYSICS, 2017, 385 : 214 - 224
  • [23] The modification of the Morse spectrum in the presence of the minimal length
    Miraboutalebi, S.
    ANNALS OF PHYSICS, 2020, 422
  • [24] Remarks on the interquark potential in the presence of a minimal length
    Gaete, Patricio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (47)
  • [25] Quantum phase transitions of the Dirac oscillator in a minimal length scenario
    Menculini, L.
    Panella, O.
    Roy, P.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [26] The Harmonic Oscillator in the Classical Limit of a Minimal-Length Scenario
    Quintela, T. S., Jr.
    Fabris, J. C.
    Nogueira, J. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (06) : 777 - 783
  • [27] The Harmonic Oscillator in the Classical Limit of a Minimal-Length Scenario
    T. S. Quintela
    J. C. Fabris
    J. A. Nogueira
    Brazilian Journal of Physics, 2016, 46 : 777 - 783
  • [28] Statistical aspects of harmonic oscillator under minimal length supposition
    Matin, L. Farhang
    Miraboutalebi, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 425 : 10 - 17
  • [29] Harmonic oscillator with minimal length uncertainty relations and ladder operators
    Dadic, I
    Jonke, L
    Meljanac, S
    PHYSICAL REVIEW D, 2003, 67 (08)
  • [30] Generalized relativistic harmonic oscillator in minimal length quantum mechanics
    Castro, L. B.
    Obispo, A. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (28)