Bosonic oscillator in the presence of minimal length

被引:36
|
作者
Falek, M. [1 ]
Merad, M. [1 ]
机构
[1] Univ Oum El Bouaghi, Dept Phys, Oum El Bouaghi 04000, Algeria
关键词
eigenvalues and eigenfunctions; harmonic oscillators; matrix algebra; quantum gravity; quantum theory; Schrodinger equation; GENERALIZED UNCERTAINTY PRINCIPLE; KEMMER-PETIAU OSCILLATOR; DIRAC-OSCILLATOR; QUANTUM-MECHANICS; STRING THEORY; NONCOMMUTATIVE SPACE; HARMONIC-OSCILLATOR; PLANCK-SCALE; KLEIN-GORDON; EQUATION;
D O I
10.1063/1.3076900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the one-dimensional Bosonic oscillator for spin 1 and spin 0, in the momentum space with the presence of minimal length uncertainty, the energy eigenvalues, and eigenfunctions are then determined for both cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A generalized bosonic oscillator in the presence of a minimal length
    Falek, M.
    Merad, M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [2] Klein Paradox for the Bosonic Equation in the Presence of Minimal Length
    M. Falek
    M. Merad
    M. Moumni
    [J]. Foundations of Physics, 2015, 45 : 507 - 524
  • [3] Klein Paradox for the Bosonic Equation in the Presence of Minimal Length
    Falek, M.
    Merad, M.
    Moumni, M.
    [J]. FOUNDATIONS OF PHYSICS, 2015, 45 (05) : 507 - 524
  • [4] Two-Dimensional Klein–Gordon Oscillator in the Presence of a Minimal Length
    Boumali A.
    Selama Z.
    [J]. Physics of Particles and Nuclei Letters, 2018, 15 (5) : 473 - 477
  • [5] Dirac oscillator and minimal length
    Valtancoli, P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06)
  • [6] Propagator of Dirac oscillator in 2D with the presence of the minimal length uncertainty
    Benzair, H.
    Boudjedaa, T.
    Merad, M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):
  • [7] Propagator of Dirac oscillator in 2D with the presence of the minimal length uncertainty
    H. Benzair
    T. Boudjedaa
    M. Merad
    [J]. The European Physical Journal Plus, 132
  • [8] Thermodynamics of harmonic oscillator with minimal length
    Koffa, D. J.
    Ibrahim, T. T.
    Omonile, J. F.
    Oladimeji, E. O.
    Gwani, M. M.
    Edogbanya, H. O.
    [J]. PHYSICA SCRIPTA, 2024, 99 (05)
  • [9] Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation
    Falaye, B. J.
    Dong, Shi-Hai
    Oyewumi, K. J.
    Haiwi, K. F.
    Ikhdair, S. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2015, 24 (11):
  • [10] Pseudoharmonic oscillator in quantum mechanics with a minimal length
    Bouaziz, Djamil
    Boukhellout, Abdelmalek
    [J]. MODERN PHYSICS LETTERS A, 2014, 29 (28)