The solutions for nonlinear Schrodinger equations

被引:0
|
作者
Ru, Shaolei [1 ]
Chen, Jiecheng [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
美国国家科学基金会;
关键词
Schrodinger equation; Global well-posedness; Weak solution; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; BLOW-UP; SCATTERING; OPERATORS; NLS;
D O I
10.1016/j.na.2013.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation {iu(t) +Delta u +/- f(u) = 0, f(u) = vertical bar u vertical bar(2m)u(n), m, n is an element of N, (x, t) is an element of R-N x R u(0, x) = u(0)(x). (*) We give a formal solution of the Cauchy problem (*). By this formal solution, we obtain that there exists a constant B independent of p, N such that for any initial data parallel to u(0)parallel to H-s < B, 0 <= s < N/2, 2m + n = 1 + 4/(N - 2s), the Schrodinger equation (*) has a unique global solution u is an element of L-r (-infinity, infinity; B-p(s),(2)). Moreover, when m = 0, we give a unique (weak) solution of the Cauchy problem (*) in D' (distribution). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 50 条
  • [21] Solitary wave solutions of chiral nonlinear Schrodinger equations
    Esen, Handenur
    Ozdemir, Neslihan
    Secer, Aydin
    Bayram, Mustafa
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    MODERN PHYSICS LETTERS B, 2021, 35 (30):
  • [22] LOCAL REGULARITY OF SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATIONS
    SJOLIN, P
    ARKIV FOR MATEMATIK, 1990, 28 (01): : 145 - 157
  • [23] ENERGY SUPERCRITICAL NONLINEAR SCHRODINGER EQUATIONS: QUASIPERIODIC SOLUTIONS
    Wang, W. -M.
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (06) : 1129 - 1192
  • [24] Global existence of small solutions to nonlinear Schrodinger equations
    Hayashi, N
    Hirata, H
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) : 671 - 685
  • [25] Self-Similar Solutions for Nonlinear Schrodinger Equations
    Ye, Yaojun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [26] Semiclassical solutions for the nonlinear Schrodinger-Maxwell equations
    Huang, Wen-nian
    Tang, X. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (02) : 791 - 802
  • [27] Asymptotical solutions of coupled nonlinear Schrodinger equations with perturbations
    Cheng Xue-Ping
    Lin Ji
    Ye Li-Jun
    CHINESE PHYSICS, 2007, 16 (09): : 2503 - 2509
  • [28] Asymptotics of odd solutions for cubic nonlinear Schrodinger equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) : 1703 - 1722
  • [29] INFINITELY MANY SOLUTIONS OF THE NONLINEAR FRACTIONAL SCHRODINGER EQUATIONS
    Du, Miao
    Tian, Lixin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (10): : 3407 - 3428
  • [30] Some Exact and Explicit Solutions for Nonlinear Schrodinger Equations
    Aslan, I.
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 16 - 20