We have systematically investigated atomic structures, electronic and dynamical properties of amorphous aluminum-gallium-nitride alloys (a-AlGaN) by performing first principles local basis molecular dynamics simulations. The network topology and defects of the amorphous 216-atom model system have been analyzed with the radial distribution function, the angular distribution function, the ring statistics, and the local coordination. It was found that the models have mixed threefold and fourfold coordinations, and the number of threefold (fourfold) coordinated atoms in alloys decreased (increased) with increasing Al composition. No odd rings are found, indicating that no wrong bonds (homonuclear bonds) appear in the a-AlxGa1-xN alloys. The Ga-N and Al-N bond lengths show a small variation with the Al composition, which is in agreement with recent extended x-ray absorption fine structure experimental measurements. The electronic properties examined by the electronic density of states and local bonding character demonstrate that no mid-band-gap states exist. The band-gap dependence on Al fraction x in a-AlxGa1-xN alloys shows a nearly linear variation with Al composition, and exhibits a small downward bowing behavior. It was also shown that valence band tail states are mostly localized on the threefold coordinated N sites, while the conduction band tail states are mostly localized on the threefold coordinated Ga and Al sites, and the electronic localization tends to become weaker with the addition of Al. We find a mixture of sp(3) and sp(2) bonds present in the network and their interaction plays a key role in the dynamical properties of a-AlxGa1-xN alloys. (C) 2002 American Institute of Physics.