Height of a superposition

被引:2
|
作者
Delhomme, Christian [1 ]
机构
[1] Univ La Reunion, Dept Math & Informat, ERMIT, St Denis 97715 9, Reunion, France
关键词
edge-partition; poset; height; natural product of ordinals;
D O I
10.1007/s11083-006-9044-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We observe that, given a poset (E, R) and a finite covering R = R-1. boolean OR. . .boolean OR. R-n of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: h(E, R) <= h(E, R-1) circle times. . .circle times. h(E, R-n). Conversely for every finite sequence (xi(1), . . ., xi(n)) of ordinals, every poset (E, R) of height at most xi(1) circle times. . . circle times epsilon(n) admits a partition (R-1, . . ., R-n) of its ordering R such that each (E, R-k) has height at most xi(k). In particular for every finite sequence (xi(1), . . . , xi(n)) of ordinals, the ordinal xi(1) (circle times) under bar. . . (circle times) under bar := sup {(xi(1)' circle times. . .circle times xi(n)') + 1 : xi(1)',. . ., xi(n)' < xi(n)} is the least. for which the following partition relation holds h xi ->(h(xi 1), . . , h(xi n))(2) meaning: for every poset (A, R) of height at least. and every finite covering (R-1, . . ., R-n) of its ordering R, there is a k for which the relation (A, R-k) has height at least xi(k). The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 50 条
  • [21] Superposition Quantification
    常利娜
    骆顺龙
    孙源
    CommunicationsinTheoreticalPhysics, 2017, 68 (11) : 565 - 570
  • [22] Superposition with Lambdas
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    Waldmann, Uwe
    AUTOMATED DEDUCTION, CADE 27, 2019, 11716 : 55 - 73
  • [23] Superposition by position
    Jin, Hui
    Laroia, Rajiv
    Richardson, Tom
    2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 222 - +
  • [24] Observing a superposition
    Skokowski, Paul
    SYNTHESE, 2021, 199 (3-4) : 7107 - 7129
  • [25] Functional superposition
    Sypniewski, BP
    TWENTY-THIRD LACUS FORUM 1996, 1997, : 279 - 287
  • [26] Linear superposition
    Jonsan, Howard
    EDN, 2010, 55 (19)
  • [27] Superposition with Lambdas
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    Waldmann, Uwe
    JOURNAL OF AUTOMATED REASONING, 2021, 65 (07) : 893 - 940
  • [28] The superposition scandal
    Sandberg, IW
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1998, 17 (06) : 733 - 735
  • [29] On the superposition of probabilities
    Simmons, JA
    THEORY AND APPLICATIONS OF THE CLUSTER VARIATION AND PATH PROBABILITY METHODS, 1996, : 387 - 420
  • [30] Generation of binomial superposition states and excited coherent superposition states
    Wang, Xiaoguang
    Yu, Rongjin
    Wu, Shengli
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 1998, 9 (06): : 509 - 510