Height of a superposition

被引:2
|
作者
Delhomme, Christian [1 ]
机构
[1] Univ La Reunion, Dept Math & Informat, ERMIT, St Denis 97715 9, Reunion, France
关键词
edge-partition; poset; height; natural product of ordinals;
D O I
10.1007/s11083-006-9044-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We observe that, given a poset (E, R) and a finite covering R = R-1. boolean OR. . .boolean OR. R-n of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: h(E, R) <= h(E, R-1) circle times. . .circle times. h(E, R-n). Conversely for every finite sequence (xi(1), . . ., xi(n)) of ordinals, every poset (E, R) of height at most xi(1) circle times. . . circle times epsilon(n) admits a partition (R-1, . . ., R-n) of its ordering R such that each (E, R-k) has height at most xi(k). In particular for every finite sequence (xi(1), . . . , xi(n)) of ordinals, the ordinal xi(1) (circle times) under bar. . . (circle times) under bar := sup {(xi(1)' circle times. . .circle times xi(n)') + 1 : xi(1)',. . ., xi(n)' < xi(n)} is the least. for which the following partition relation holds h xi ->(h(xi 1), . . , h(xi n))(2) meaning: for every poset (A, R) of height at least. and every finite covering (R-1, . . ., R-n) of its ordering R, there is a k for which the relation (A, R-k) has height at least xi(k). The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 50 条
  • [1] Height of a Superposition
    Christian Delhommé
    Order, 2006, 23 : 221 - 233
  • [2] Decay and superposition of initial surge height of landslide along reservoir shoreline
    Wang, Y
    Yin, KL
    Ye, JF
    Liu, LL
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON WATER RESOURCES AND THE URBAN ENVIRONMENT, 2003, : 593 - 596
  • [3] Superposition
    Lucas-Pennington, Grace
    OVERLAND, 2020, (239): : 62 - 63
  • [4] SUPERPOSITION
    不详
    NATURE, 1973, 241 (5388) : 310 - 310
  • [5] Superposition
    Steeves, Nicole R.
    LIBRARY JOURNAL, 2015, 140 (05) : 87 - 87
  • [6] Superposition
    Martinez-Medina, Andres
    I2 INVESTIGACION E INNOVACION EN ARQUITECTURA Y TERRITORIO, 2020, 8 (01):
  • [7] Enhanced superposition determination for weighted superposition attraction algorithm
    Adil Baykasoğlu
    Şener Akpinar
    Soft Computing, 2020, 24 : 15015 - 15040
  • [8] Enhanced superposition determination for weighted superposition attraction algorithm
    Baykasoglu, Adil
    Akpinar, Sener
    SOFT COMPUTING, 2020, 24 (19) : 15015 - 15040
  • [9] Superposition rheology
    Dhont, Jan K. G.
    Wagner, Norman J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (2 I): : 021406 - 021401
  • [10] The superposition scandal
    Irwin W. Sandberg
    Circuits, Systems and Signal Processing, 1998, 17 : 733 - 735