A VARIANT OF THE S-VERSION OF THE FINITE ELEMENT METHOD FOR CONCURRENT MULTISCALE COUPLING

被引:22
|
作者
Sun, Wei [1 ]
Fish, Jacob [2 ]
Ben Dhia, Hachmi [3 ]
机构
[1] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[2] Columbia Univ, Civil Engn & Engn Mech, New York, NY 10027 USA
[3] Univ Paris Saclay, UMR CNRS 8579, Cent Supelec, Lab MSSMat, Paris, France
关键词
s-method; Arlequin method; concurrent multiscale; enrichment; coupling; finite element method; BRIDGING DOMAIN METHOD; ARLEQUIN METHOD; COMPOSITE-MATERIALS; FORMULATION; DESIGN; MODELS;
D O I
10.1615/IntJMultCompEng.2018026400
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variant of the s-version of the finite element method (hereafter coined the s-method) for concurrent multiscale coupling is developed. The proposed method is inspired by a combination of the s-version of the finite element method and the Arlequin method. It features a superposition of a local (fine) mesh, which partly overlaps a global (coarse) mesh, and appropriate homogeneous boundary conditions on both meshes that enforce solution continuity. Its performance in terms of accuracy and computational efficiency in solving a class of multiscale continuum mechanics problems is evaluated by virtue of comparison to the fine reference single mesh and the Arlequin method. Numerical studies are conducted for one-,two-, and three-dimensional problems. For select local and global meshes, the cause of accuracy gains in comparison to the Arlequin method, while having almost the same gain in CPU time, with respect to the discrete single fine mesh for both approaches, is explained.
引用
收藏
页码:187 / 207
页数:21
相关论文
共 50 条
  • [21] Element subdivision technique for coupling-matrix-free iterative s-version FEM and investigation of sufficient element subdivision
    Yumoto, Yosuke
    Yusa, Yasunori
    Okada, Hiroshi
    MECHANICAL ENGINEERING JOURNAL, 2016, 3 (05):
  • [22] Surface crack analysis under cyclic loads using probabilistic S-version finite element model
    M. R. M. Akramin
    M. S. Shaari
    A. K. Ariffin
    Masanori Kikuchi
    S. Abdullah
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37 : 1851 - 1865
  • [23] Surface crack analysis under cyclic loads using probabilistic S-version finite element model
    Akramin, M. R. M.
    Shaari, M. S.
    Ariffin, A. K.
    Kikuchi, Masanori
    Abdullah, S.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2015, 37 (06) : 1851 - 1865
  • [24] Statistical distributions for prediction of stress intensity factor using the bootstrap S-version finite element model
    Husnain, M. N. M.
    Akramin, M. R. M.
    Chuan, Z. L.
    Rozieana, K.
    5TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH 2019 (ICMER 2019), 2020, 788
  • [25] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [26] COUPLING OF THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHOD - THE H-P VERSION
    HEUER, N
    STEPHAN, EP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T584 - T586
  • [27] Surface crack growth prediction under fatigue load using probabilistic S-version finite element model
    M. R. M. Akramin
    A. K. Ariffin
    Masanori Kikuchi
    M. Beer
    M. S. Shaari
    M. N. M. Husnain
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [28] Surface crack growth prediction under fatigue load using the S-version Finite Element Model (S-FEM)
    Husnain, M. N. M.
    Akramin, M. R. M.
    Chuan, Z. L.
    1ST INTERNATIONAL POSTGRADUATE CONFERENCE ON MECHANICAL ENGINEERING (IPCME2018), 2019, 469
  • [29] Surface crack growth prediction under fatigue load using probabilistic S-version finite element model
    Akramin, M. R. M.
    Ariffin, A. K.
    Kikuchi, Masanori
    Beer, M.
    Shaari, M. S.
    Husnain, M. N. M.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (11)
  • [30] A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling
    Brown, Donald L.
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 297 : 132 - 146