Operational classification and quantification of multipartite entangled states

被引:51
|
作者
Rigolin, Gustavo [1 ]
de Oliveira, Thiago R. [1 ]
de Oliveira, Marcos C. [1 ]
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, Dept Fis Mat Condensada, BR-13083970 Campinas, SP, Brazil
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 02期
关键词
D O I
10.1103/PhysRevA.74.022314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We formalize and extend an operational multipartite entanglement measure introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A 73, 010305(R) (2006), through the generalization of global entanglement (GE) [D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to GE the main feature of this measure lies in the fact that we study the mean linear entropy of all possible partitions of a multipartite system. This allows the construction of an operational multipartite entanglement measure which is able to distinguish among different multipartite entangled states that GE failed to discriminate. Furthermore, it is also maximum at the critical point of the Ising chain in a transverse magnetic field, being thus able to detect a quantum phase transition.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Universal gates for transforming multipartite entangled Dicke states
    Kobayashi, Toshiki
    Ikuta, Rikizo
    Oezdemir, Sahin Kaya
    Tame, Mark
    Yamamoto, Takashi
    Koashi, Masato
    Imoto, Nobuyuki
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [42] Multipartite entangled states with two bosonic modes and qubits
    Munhoz, P. P.
    Semiao, F. L.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (03): : 509 - 519
  • [43] Multipartite entangled magnon states as quantum communication channels
    Prasath, E. Sriram
    Muralidharan, Sreraman
    Mitra, Chiranjib
    Panigrahi, Prasanta K.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 397 - 410
  • [44] ENT: A MULTIPARTITE ENTANGLEMENT MEASURE, AND PARAMETERIZATION OF ENTANGLED STATES
    Hedemann, Samuel R.
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (5-6) : 389 - 442
  • [45] Local Hamiltonians for maximally multipartite-entangled states
    Facchi, P.
    Florio, G.
    Pascazio, S.
    Pepe, F.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [46] Connecting two multipartite entangled states by entanglement swapping
    Su, Xiaolong
    Tian, Caixing
    Deng, Xiaowei
    Li, Qiang
    Xie, Changde
    Peng, Kunchi
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [47] A flying Schrodinger's cat in multipartite entangled states
    Wang, Zhiling
    Bao, Zenghui
    Wu, Yukai
    Li, Yan
    Cai, Weizhou
    Wang, Weiting
    Ma, Yuwei
    Cai, Tianqi
    Han, Xiyue
    Wang, Jiahui
    Song, Yipu
    Sun, Luyan
    Zhang, Hongyi
    Duan, Luming
    SCIENCE ADVANCES, 2022, 8 (10)
  • [48] Separated atomic ensembles: Multimode squeezed states and multipartite entangled states
    Xu, Qing
    Hu, Xiangming
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [49] Multipartite mixed maximally entangled states: mixed states with entanglement 1
    Hedemann, Samuel R.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [50] Multipartite mixed maximally entangled states: mixed states with entanglement 1
    Samuel R. Hedemann
    Quantum Information Processing, 21