Norms on complex matrices induced by complete homogeneous symmetric polynomials

被引:5
|
作者
Aguilar, Konrad [1 ]
Chavez, Angel [1 ]
Garcia, Stephan Ramon [1 ]
Volcic, Jurij [2 ]
机构
[1] Pomona Coll, Dept Math & Stat, 610 N Coll Ave, Claremont, CA 91711 USA
[2] Univ Copenhagen, Dept Math Sci, Copenhagen O, Denmark
关键词
POSITIVITY; INEQUALITY; PRODUCTS; TRACE;
D O I
10.1112/blms.12679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a remarkable new family of norms on the space of nxn$n \times n$ complex matrices. These norms arise from the combinatorial properties of symmetric functions, and their construction and validation involve probability theory, partition combinatorics, and trace polynomials in non-commuting variables. Our norms enjoy many desirable analytic and algebraic properties, such as an elegant determinantal interpretation and the ability to distinguish certain graphs that other matrix norms cannot. Furthermore, they give rise to new dimension-independent tracial inequalities. Their potential merits further investigation.
引用
收藏
页码:2078 / 2100
页数:23
相关论文
共 50 条
  • [21] Characteristic polynomials of real symmetric random matrices
    Brézin, E
    Hikami, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) : 363 - 382
  • [22] Characteristic Polynomials¶of Real Symmetric Random Matrices
    E. Brézin
    S. Hikami
    Communications in Mathematical Physics, 2001, 223 : 363 - 382
  • [23] Remarks on two symmetric polynomials and some matrices
    El-Mikkawy, Moawwad
    Atlan, Faiz
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8770 - 8778
  • [24] MORE SYMMETRIC POLYNOMIALS RELATED TO p-NORMS
    Klemes, Ivo
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (03): : 815 - 830
  • [25] Norms on complex matrices induced by random vectors II: extension of weakly unitarily invariant norms
    Chavez, Angel
    Garcia, Stephan Ramon
    Hurley, Jackson
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 447 - 457
  • [26] A complete system of homogeneous monogenic polynomials and their derivatives
    Caçao, I
    Gürlekeck, K
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 317 - 324
  • [27] On complex symmetric operator matrices
    Jung, Sungeun
    Ko, Eungil
    Lee, Ji Eun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 373 - 385
  • [28] Bounds for the Norms of Symmetric Toeplitz Matrices in Information Theory
    Jiang, Zhaolin
    Jiang, Ziwu
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 508 - 517
  • [29] WEIGHTS INDUCED BY HOMOGENEOUS POLYNOMIALS
    CHOE, BR
    PACIFIC JOURNAL OF MATHEMATICS, 1989, 139 (02) : 225 - 240
  • [30] GEOMETRY OF HOMOGENEOUS POLYNOMIALS ON NON SYMMETRIC CONVEX BODIES
    Munoz-Fernandez, G. A.
    Revesz, S. Gy.
    Seoane-Sepulveda, J. B.
    MATHEMATICA SCANDINAVICA, 2009, 105 (01) : 147 - 160