Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

被引:40
|
作者
Brosten, Troy R. [1 ]
Bradford, John H. [2 ]
McNamara, James P. [2 ]
Gooseff, Michael N. [3 ]
Zarnetske, Jay P. [4 ]
Bowden, William B. [5 ]
Johnston, Morgan E. [6 ]
机构
[1] US Geol Survey, Storrs, CT 06269 USA
[2] Boise State Univ, Dept Geosci, Boise, ID 83725 USA
[3] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[4] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA
[5] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05401 USA
[6] Stone Environm Inc, Montpelier, VT 05602 USA
基金
美国国家科学基金会;
关键词
3D ground-penetrating radar; Permafrost; Thaw bulb; Arctic streams; Hyporheic; SHORT-PULSE RADAR; NORTHERN ALASKA; ARCHAEOLOGICAL FEATURES; 3-DIMENSIONAL GEORADAR; PERMAFROST THICKNESS; HYPORHEIC EXCHANGE; SW GERMANY; RIVER; ARCHITECTURE; RESOLUTION;
D O I
10.1016/j.jhydrol.2009.05.011
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 31) survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone. Published by Elsevier B.V.
引用
收藏
页码:479 / 486
页数:8
相关论文
共 50 条
  • [31] Estimating pipeline location using ground-penetrating radar data in the presence of model uncertainties
    Lahivaara, Timo
    Ward, Nicholas F. Dudley
    Huttunen, Tomi
    Kaipio, Jari P.
    Niinimaki, Kati
    INVERSE PROBLEMS, 2014, 30 (11)
  • [32] Estimating winter ebullition bubble volume in lake ice using ground-penetrating radar
    Fantello, Nadia
    Parsekian, Andrew D.
    Anthony, Katey M. Walter
    GEOPHYSICS, 2018, 83 (02) : H13 - H25
  • [33] Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar
    Westermann, S.
    Wollschlaeger, U.
    Boike, J.
    CRYOSPHERE, 2010, 4 (04): : 475 - 487
  • [34] 3D imaging of a reservoir analogue in point bar deposits in the Ferron Sandstone, Utah, using ground-penetrating radar
    Zeng, XX
    McMechan, GA
    Bhattacharya, JP
    Aiken, CLV
    Xu, XM
    Hammon, WS
    Corbeanu, RM
    GEOPHYSICAL PROSPECTING, 2004, 52 (03) : 151 - 163
  • [35] Topographic migration of 2D and 3D ground-penetrating radar data considering variable velocities
    Allroggen, Niklas
    Tronicke, Jens
    Delock, Marcel
    Boeniger, Urs
    NEAR SURFACE GEOPHYSICS, 2015, 13 (03) : 253 - 259
  • [36] Unveiling buried aeolian landscapes: reconstructing a late Holocene dune environment using 3D ground-penetrating radar
    Rees-Hughes, Luis
    Barlow, Natasha L. M.
    Booth, Adam D.
    West, Landis J.
    Tuckwell, George
    Grossey, Tim
    JOURNAL OF QUATERNARY SCIENCE, 2021, 36 (03) : 377 - 390
  • [37] Numerical modeling of ground-penetrating radar in 2-D using MATLAB
    Irving, James
    Knight, Rosemary
    COMPUTERS & GEOSCIENCES, 2006, 32 (09) : 1247 - 1258
  • [38] 3-D ground-penetrating radar applied to fracture imaging in gneiss
    Grasmueck, M
    GEOPHYSICS, 1996, 61 (04) : 1050 - 1064
  • [39] Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar
    Pouw, Alicia F.
    Pour, Homa Kheyrollah
    MacLean, Alex
    CRYOSPHERE, 2023, 17 (06): : 2367 - 2385
  • [40] The Design of 3-D Ground-Penetrating Radar System for Bridge Inspection
    Shi, Xinghua
    Zhang, Anxue
    Han, Guoqing
    Yin, Yuemeng
    Chen, Wenchao
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 21276 - 21285