Optical phase under deep turbulence conditions

被引:6
|
作者
Charnotskii, Mikhail I. [1 ,2 ]
机构
[1] Zel Technol LLC, Boulder, CO 80305 USA
[2] NOAA, Earth Syst Res Lab Res Lab, Boulder, CO 80305 USA
关键词
LASER-BEAM; DISLOCATIONS; PROPAGATION; STATISTICS; WAVE;
D O I
10.1364/JOSAA.31.001766
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Markov approximation for waves in random media specifies that, under strong scintillation conditions, the optical field of unbounded waves has a normal probability distribution with zero mean. Using the coherence function provided by the Markov approximation, we calculate statistics of the phase of the optical field that accounts for the presence of multiple phase dislocations. We also develop and test a Monte Carlo model that generates the phase samples obeying these statistics. In contrast to numerous phase models described in the literature, this model generates discontinuous phase samples that contain optical vortices. (C) 2014 Optical Society of America
引用
收藏
页码:1766 / 1772
页数:7
相关论文
共 50 条
  • [31] Numerical simulations of superfluid turbulence under periodic conditions
    Kondaurova, Luiza P.
    Andryuschenko, Vladimir A.
    Nemirovskii, Sergey K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 150 (3-4) : 415 - 419
  • [33] Optical Improved Quadrature Spatial Modulation for Cooperative Underwater Wireless Communication under Weak Oceanic Turbulence Conditions
    Bhowal, Anirban
    Kshetrimayum, Rakhesh Singh
    IET OPTOELECTRONICS, 2020, 14 (06) : 434 - 439
  • [34] Antenna gain of actively compensated free-space optical communication systems under strong turbulence conditions
    Juarez, Juan C.
    Brown, David M.
    Young, David W.
    OPTICS EXPRESS, 2014, 22 (10): : 12551 - 12562
  • [35] Optical wave angle of arrival fluctuations in deep anisotropic turbulence
    Cui, Linyan
    OPTIK, 2018, 169 : 368 - 375
  • [36] Deep learning for multi-star recognition in optical turbulence
    Shohani, Jafar Bakhtiar
    Hajimahmoodzadeh, Morteza
    Fallah, Hamidreza
    OPTICS CONTINUUM, 2022, 1 (11): : 2347 - 2359
  • [37] On Performance of Underwater Wireless Optical Communications Under Turbulence
    Zhang, Shi
    Zhang, Li
    Wang, Zhaocheng
    Quan, Jinguo
    Cheng, Julian
    Dong, Yuhan
    2020 IEEE 17TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC 2020), 2020,
  • [38] Generating Kolmogorov phase screens for modeling optical turbulence
    McAulay, AD
    LASER WEAPONS TECHNOLOGY, 2000, 4034 : 50 - 57
  • [39] Tracking bandwidth limitations for strong optical-turbulence conditions
    Kalensky, Matthew
    Getts, Darren
    Spencer, Mark F.
    OPTICS LETTERS, 2024, 49 (08) : 2081 - 2084
  • [40] On the Relative Effect of Underwater Optical Turbulence in Different Channel Conditions
    Geldard, Callum T.
    Thompson, John S.
    Popoola, Wasiu O.
    IEEE ACCESS, 2024, 12 : 11104 - 11113