A neural network approach to the detection of the depth of tracer particles from in-line hologram patterns

被引:0
|
作者
Murata, S [1 ]
Takeuchi, N [1 ]
机构
[1] KYOTO INST TECHNOL,KYOTO,JAPAN
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:377 / 382
页数:6
相关论文
共 50 条
  • [21] In-Line Any-Depth Deep Neural Networks Using P4 Switches
    Paolini, Emilio
    de Marinis, Lorenzo
    Scano, Davide
    Paolucci, Francesco
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3556 - 3567
  • [22] Depth from defocusing using a neural network
    Pham, DT
    Aslantas, V
    PATTERN RECOGNITION, 1999, 32 (05) : 715 - 727
  • [23] Multi-layer neural network applied to phase and depth recovery from fringe patterns
    Cuevas, FJ
    Servin, M
    Stavroudis, ON
    Rodriguez-Vera, R
    OPTICS COMMUNICATIONS, 2000, 181 (4-6) : 239 - 259
  • [24] Recovery of 3D particles distribution from digital hologram using a one-stage detection network
    Zhang, Yunping
    Lam, Edmund Y.
    HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS XI, 2021, 11898
  • [25] Depth object recovery using a light line and a regression neural network
    Rodríguez, JAM
    Rodriguez-Vera, R
    Asundi, A
    OPTICA APPLICATA, 2005, 35 (02) : 295 - 309
  • [26] Object reconstruction from in-line Fresnel holograms without explicit depth focusing
    Özgen, MT
    Tuncer, TE
    OPTICAL ENGINEERING, 2004, 43 (06) : 1300 - 1310
  • [27] Neural network based defect detection and depth estimation in TNDE
    Darabi, A
    Maldague, X
    NDT & E INTERNATIONAL, 2002, 35 (03) : 165 - 175
  • [28] The convolutional neural network approach from electroencephalogram signals in emotional detection
    Turk, Omer
    Ozerdem, Mehmet Sirac
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20):
  • [29] Fire detection from hypespectral data using neural network approach
    Piscini, Alessandro
    Amici, Stefania
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [30] Recurrent Neural Network Based Virtual Detection Line
    Kadikis, Roberts
    TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696