Diagnostic analytics for a GARCH model under skew-normal distributions

被引:2
|
作者
Liu, Yonghui [1 ]
Wang, Jing [1 ]
Yao, Zhao [1 ]
Liu, Conan [2 ]
Liu, Shuangzhe [3 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[2] Univ New South Wales, Business Sch, Randwick, Australia
[3] Univ Canberra, Fac Sci & Technol, Canberra, ACT, Australia
关键词
Expectation-maximization algorithm; GARCH model; local influence technique; maximum likelihood estimation; Monte Carlo simulation; skew-normal distribution; TIME-SERIES MODELS; AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY; STEPWISE LOCAL INFLUENCE; MAXIMUM-LIKELIHOOD; REGRESSION-MODELS; SCALE MIXTURES;
D O I
10.1080/03610918.2022.2157015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a generalized autoregressive conditional heteroskedasticity model under skew-normal distributions is studied. A maximum likelihood approach is taken and the parameters in the model are estimated based on the expectation-maximization algorithm. The statistical diagnostics is made through the local influence technique, with the normal curvature and diagnostics results established for the model under four perturbation schemes in identifying possible influential observations. A simulation study is conducted to evaluate the performance of our proposed method and a real-world application is presented as an illustrative example.
引用
收藏
页码:4850 / 4874
页数:25
相关论文
共 50 条
  • [31] Skew-symmetric distributions and Fisher information: The double sin of the skew-normal
    Hallin, Marc
    Ley, Christophe
    BERNOULLI, 2014, 20 (03) : 1432 - 1453
  • [32] Bayesian inference for a skew-normal IRT model under the centred parameterization
    Azevedo, Caio L. N.
    Bolfarine, Heleno
    Andrade, Dalton F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 353 - 365
  • [33] Truncated and Limited Skew-Normal and Skew-t Distributions: Properties and an Illustration
    Jamalizadeh, A.
    Pourmousa, R.
    Balakrishnan, N.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (16-17) : 2653 - 2668
  • [34] On order statistics from bivariate skew-normal and skew-tν distributions
    Jamalizadeh, A.
    Balakrishnan, N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 4187 - 4197
  • [35] Maximum penalized likelihood estimation for skew-normal and skew-t distributions
    Azzalini, Adelchi
    Arellano-Valle, Reinaldo B.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (02) : 419 - 433
  • [36] Estimation and diagnostic for skew-normal partially linear models
    Ferreira, Clecio S.
    Paula, Gilberto A.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (16) : 3033 - 3053
  • [37] The orthogonal skew model: computationally efficient multivariate skew-normal and skew-t distributions with applications to model-based clustering
    Browne, Ryan P.
    Andrews, Jeffrey L.
    TEST, 2024, 33 (03) : 752 - 785
  • [38] Some multivariate singular unified skew-normal distributions and their application
    Amiri, Mehdi
    Jamalizadeh, Ahad
    Towhidi, Mina
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (08) : 2159 - 2171
  • [39] A nonlinear regression model with skew-normal errors
    Vicente G. Cancho
    Víctor H. Lachos
    Edwin M. M. Ortega
    Statistical Papers, 2010, 51 : 547 - 558
  • [40] Skew-normal alpha-power model
    Martinez-Florez, Guillermo
    Bolfarine, Heleno
    Gomez, Hector W.
    STATISTICS, 2014, 48 (06) : 1414 - 1428