Experimental study of shock wave structure in syntactic foams under high-velocity impact

被引:12
|
作者
Rostilov, T. A. [1 ]
Ziborov, V. S. [1 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
关键词
High-velocity impact; Spacecraft protection; Syntactic foam; Shock wave; Precursor; Hugoniot; HYPERVELOCITY IMPACT; NUMERICAL-SIMULATION; DYNAMIC COMPACTION; COMPRESSION; VISCOSITY; STRENGTH; BEHAVIOR; COPPER; EPOXY; IRON;
D O I
10.1016/j.actaastro.2020.10.022
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Behavior of spacecraft structural materials under the high-velocity impact should be thoroughly investigated due to the constant threat of collision with space debris and meteoroids. Syntactic foams are perspective lightweight composite materials for spacecraft protection capable to attenuate shock waves. The shock response of highly filled syntactic foam to uniaxial planar impact loading was investigated using a powder gun facility and a laser velocimeter technique. The studied 0.64 g/cm(3) foam consisted of an epoxy matrix filled with 55% volume fraction of glass microspheres. Measured wave profiles demonstrate the complex two-wave configuration associated with formation of precursor and compaction waves. Hugoniot and strain-rate data for the syntactic foam are presented in the stress range of 0.28-0.7 GPa. The Hugoniot elastic limit are determined to be 0.12 GPa, which implies that a precursor cannot be neglected in shocked state calculations in the studied loading regime. The density of the foam decreases with increasing loading stress due to thermal effects. The effect of sample thickness on wave fronts, wave velocities and precursor amplitudes is described. Precursor waves did not reach stable states in the experiments.
引用
收藏
页码:900 / 907
页数:8
相关论文
共 50 条
  • [41] PROBABILISTIC FAILURE OF CERAMICS UNDER HIGH-VELOCITY IMPACT
    Zelepugin, Sergey A.
    Tolkachev, Vladimir F.
    Zelepugin, Alexey S.
    IRF2018: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INTEGRITY-RELIABILITY-FAILURE, 2018, : 865 - 870
  • [42] GFRP materials under high-velocity impact loading
    Ernst, HJ
    Wolf, T
    Hoog, K
    Unckenbold, WF
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P9): : 577 - 582
  • [43] Asymmetry of Ceramic Destruction under a High-Velocity Impact
    Zelepugin, S. A.
    Tolkachev, V. F.
    Zelepugin, A. S.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (12) : 1071 - 1073
  • [44] Behavior of strengthened glass under high-velocity impact
    Vlasov A.S.
    Zilberbrand E.L.
    Kozhushko A.A.
    Kozachuk A.I.
    Sinani A.B.
    Strength of Materials, 2002, 34 (3) : 266 - 268
  • [45] Destruction of organic glass under high-velocity impact
    Ermolaev, IK
    Vinogradov, YA
    Pilyugin, NN
    HIGH TEMPERATURE, 2000, 38 (02) : 278 - 283
  • [46] Destruction of organic glass under high-velocity impact
    I. K. Ermolaev
    Yu. A. Vinogradov
    N. N. Pilyugin
    High Temperature, 2000, 38 : 278 - 283
  • [47] Thermonuclear fusion under high-velocity cluster impact
    Lebedev, A.N.
    Fortov, V.E.
    Skvortsov, V.A.
    International Journal of Impact Engineering, 1997, 20 (6 -10 pt 2): : 511 - 515
  • [48] Experimental study of woven-laminates structures subjected to high-velocity impact
    Alonso, Luis
    Navarro, Carlos
    Garcia-Castillo, Shirley K.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (12) : 1001 - 1007
  • [49] Numerical Study on the Dynamic Behavior of Layered Structures under High-Velocity Impact
    Park, Seo Hwee
    Seok, Jin Hyeok
    Kim, Yeon Su
    Kim, Yoon A.
    Kumar, Sarath Kumar Satish
    Lee, Taekyung
    Kim, YunHo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2025, 26 (01) : 97 - 107
  • [50] Experimental and numerical study on the dynamic response of aluminum alloy wood sandwich panels under high-velocity impact
    Li, Shusen
    Zhang, Yan
    ADVANCES IN MECHANICAL ENGINEERING, 2023, 15 (05)