FLEXIBILITY OF NORMAL AFFINE HOROSPHERICAL VARIETIES

被引:6
|
作者
Gaifullin, Sergey [1 ,2 ]
Shafarevich, Anton [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Higher Algebra, Leninskie Gory 1, Moscow 119991, Russia
[2] Natl Res Univ, Fac Comp Sci, Higher Sch Econ, Kochnovskiy Proezd 3, Moscow 125319, Russia
关键词
Affine variety; automorphism; flexible variety; horospherical variety; locally nilpotent derivation; linear group action;
D O I
10.1090/proc/14528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate flexibility of affine varieties with an action of a linear algebraic group. Flexibility of a smooth affine variety with only constant invertible functions and a locally transitive action of a reductive group is proved. Also we show that a normal affine complexity-zero horospherical variety with only constant invertible functions is flexible.
引用
收藏
页码:3317 / 3330
页数:14
相关论文
共 50 条
  • [1] Flexibility of affine horospherical varieties of semisimple groups
    Shafarevich, A. A.
    SBORNIK MATHEMATICS, 2017, 208 (02) : 285 - 310
  • [2] On the Geometry of Normal Horospherical G-Varieties of Complexity One
    Langlois, Kevin
    Terpereau, Ronan
    JOURNAL OF LIE THEORY, 2016, 26 (01) : 49 - 78
  • [3] Fano horospherical varieties
    Pasquier, Boris
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02): : 195 - 225
  • [4] Real Structures on Horospherical Varieties
    Moser-Jauslin, Lucy
    Terpereau, Ronan
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (02) : 283 - 320
  • [5] Cohomology of line bundles on horospherical varieties
    Bonala, Narasimha Chary
    Dejoncheere, Benoit
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 525 - 540
  • [6] HECKE OPERATORS ON QUASIMAPS INTO HOROSPHERICAL VARIETIES
    Gaitsgory, Dennis
    Nadler, David
    DOCUMENTA MATHEMATICA, 2009, 14 : 19 - 46
  • [7] NORMAL REAL AFFINE VARIETIES WITH CIRCLE ACTIONS
    Dubouloz, Adrien
    Liendo, Alvaro
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (05) : 1831 - 1857
  • [8] On orbits of automorphism groups on horospherical varieties
    Borovik, Viktoriia
    Gaifullin, Sergey
    Shafarevich, Anton
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3174 - 3183
  • [9] Horospherical 2-Fano varieties
    Araujo C.
    Castravet A.-M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (3) : 643 - 653
  • [10] Cohomology of line bundles on horospherical varieties
    Narasimha Chary Bonala
    Benoît Dejoncheere
    Mathematische Zeitschrift, 2020, 296 : 525 - 540