Application of the ecosystem model and Markov Chain Monte Carlo for parameter estimation and productivity prediction

被引:5
|
作者
Li, Weizhong [1 ]
Peng, Changhui [1 ,2 ]
Zhou, Xiaolu [2 ]
Sun, Jianfeng [2 ]
Zhu, Qiuan [1 ]
Wu, Haibin [2 ,3 ]
St-Onge, Benoit [4 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Lab Ecol Forecasting & Global Change, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Quebec, Inst Environm Sci, Dept Biol Sci, Montreal, PQ H3C 3P8, Canada
[3] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Cenozo Geol & Environm, Beijing 100029, Peoples R China
[4] Univ Quebec, Dept Geog, Montreal, PQ H3C 3P8, Canada
来源
ECOSPHERE | 2015年 / 6卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
carbon balance; data assimilation; forest ecosystem; model-data fusion; parameter estimation; TRIPLEX-FLUX model; SIMULATING CARBON EXCHANGE; STOMATAL CONDUCTANCE; SOIL RESPIRATION; PHOTOSYNTHETIC CAPACITY; NONLINEAR INVERSION; CLIMATE-CHANGE; LEAF NITROGEN; SPRUCE FOREST; BLACK SPRUCE; DATA FUSION;
D O I
10.1890/ES15-00034.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. In process-based model applications, inherent spatial and temporal heterogeneities found within terrestrial ecosystems may lead to the uncertainties of model predictions. To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process-based ecosystem model of TRIPLEX-FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25 degrees C (Vmax), an electron transport (Jmax) light-saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10 degrees C (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO2 flux measurements taken at the seven forest ecosystem sites. Results suggest that greater seasonal variability occurs in broadleaf forests in respect to the selected parameters than in needleleaf forests. This study also demonstrated that the model-data fusion approach by incorporating MCMC method is able to better estimate parameters and improve simulation accuracy for different ecosystems located across North America.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [2] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [3] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [4] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [5] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609
  • [6] Estimating reaction model parameter uncertainty with Markov Chain Monte Carlo
    Albrecht, Jacob
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 48 : 14 - 28
  • [7] Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution
    Jiang, H.
    Xie, M.
    Tang, L. C.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (06) : 647 - 658
  • [8] Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo
    van der Sluys, Marc
    Raymond, Vivien
    Mandel, Ilya
    Roever, Christian
    Christensen, Nelson
    Kalogera, Vicky
    Meyer, Renate
    Vecchio, Alberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [9] Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation
    Dunkley, J
    Bucher, M
    Ferreira, PG
    Moodley, K
    Skordis, C
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (03) : 925 - 936
  • [10] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45