SPARSE REPRESENTATION-BASED APPROACH FOR UNSUPERVISED FEATURE SELECTION

被引:3
|
作者
Su, Ya-Ru [1 ]
Li, Chuan-Xi [2 ]
Wang, Ru-Jing [3 ,4 ]
Chen, Peng [4 ]
机构
[1] Dept Fujian Prov Publ Secur, Forens Sci Div, Fuzhou 361003, Peoples R China
[2] Chinese Acad Sci, Natl Sci Lib, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
[4] Chinese Acad Sci, Inst Intelligent Machines, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised; feature selection; sparse representation; MOTION SEGMENTATION; SHRINKAGE; ALGORITHM;
D O I
10.1142/S0218001414500062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimension reduction methods including feature selection and feature extraction have played an important role in data mining and pattern recognition. In this study, we propose a novel unsupervised feature selection approach based on sparse representation theory, namely Sparsity Score (SS). Due to the sparse representation procedure, SS not only owns the global property of Variance Score (VS) and the local property of Laplacian Score (LS), but also possesses the discriminating nature. Experimental results, based on three well-known face datasets (Yale, ORL and CMU PIE), reveal that SS performs well in the evaluation of the feature significance, and it significantly outperforms VS and LS.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Sparse representation-based human detection: a scale-embedded dictionary approach
    Vinay, G. Krishna
    Haque, S. M.
    Babu, R. Venkatesh
    Ramakrishnan, K. R.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (03) : 585 - 592
  • [42] Sparse representation-based human detection: a scale-embedded dictionary approach
    G. Krishna Vinay
    S. M. Haque
    R. Venkatesh Babu
    K. R. Ramakrishnan
    Signal, Image and Video Processing, 2016, 10 : 585 - 592
  • [43] Sparse Representation Based Feature Selection for Mass Spectrometry Data
    Ke, Jiqing
    Zhu, Lei
    Han, Bin
    Dai, Qi
    Wang, Yaojia
    Li, Lihua
    Xu, Shenhua
    Mou, Hanzhou
    Zheng, Zhiguo
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 57 - 62
  • [44] Feature selection in unsupervised context: Clustering based approach
    Klepaczko, A
    Materka, A
    Computer Recognition Systems, Proceedings, 2005, : 219 - 226
  • [45] Remote Sensing Scene Classification Using Sparse Representation-Based Framework With Deep Feature Fusion
    Mei, Shaohui
    Yan, Keli
    Ma, Mingyang
    Chen, Xiaoning
    Zhang, Shun
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5867 - 5878
  • [46] EM algorithm for sparse representation-based image inpainting
    Fadili, M
    Starck, JL
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1385 - 1388
  • [47] Sparse representation-based synthetic aperture radar imaging
    Samadi, S.
    Cetin, M.
    Masnadi-Shirazi, M. A.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (02): : 182 - 193
  • [48] Unsupervised feature selection guided by orthogonal representation of feature space
    Jahani, Mahsa Samareh
    Aghamollaei, Gholamreza
    Eftekhari, Mahdi
    Saberi-Movahed, Farid
    NEUROCOMPUTING, 2023, 516 : 61 - 76
  • [49] Latent Feature Representation-Based Low Rank Subspace Clustering for Hyperspectral Band Selection
    Shang, Xiaodi
    Zhao, Xin
    Guo, Yujie
    Sun, Xudong
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 416 - 429
  • [50] A new sparse representation-based object segmentation framework
    Jincao Yao
    Huimin Yu
    Roland Hu
    The Visual Computer, 2017, 33 : 179 - 192