Quaternionic Seiberg-Witten equation

被引:5
|
作者
Nitta, T [1 ]
Taniguchi, T [1 ]
机构
[1] KEIO UNIV,DEPT MATH,YOKOHAMA,KANAGAWA 223,JAPAN
关键词
D O I
10.1142/S0129167X96000360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize Seiberg-Witten equations to a higher dimensional quaternionic Kahler manifold and study the moduli space.
引用
收藏
页码:697 / 703
页数:7
相关论文
共 50 条
  • [41] SEIBERG-WITTEN FLOW IN HIGHER DIMENSIONS
    Schabrun, Lorenz
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 93 (03) : 311 - 324
  • [42] Seiberg-Witten theory with SpinH structure
    Kim, Inkang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [43] Variational principle for the Seiberg-Witten equations
    Doria, CM
    Contributions to Nonlinear Analysis: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 247 - 261
  • [44] What is the Seiberg-Witten map exactly?
    Kupriyanov, Vladislav
    Sharapov, Alexey
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (37)
  • [45] Seiberg-Witten theory as a Fermi gas
    Bonelli, Giulio
    Grassi, Alba
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (01) : 1 - 30
  • [46] SEIBERG-WITTEN EQUATIONS WITH NEGATIVE SING
    Degirmenci, Nedim
    Ozdemir, Nulifer
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2010, 3 (02): : 40 - 48
  • [47] Variational aspects of the Seiberg-Witten functional
    Jost, J
    Peng, XW
    Wang, GF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (03) : 205 - 218
  • [48] Addendum: Seiberg-Witten theories on ellipsoids
    Naofumi Hama
    Kazuo Hosomichi
    Journal of High Energy Physics, 2012
  • [49] Seiberg-Witten monopoles and the Thom conjecture
    Bennequin, D
    ASTERISQUE, 1997, (241) : 59 - 96
  • [50] A note on Seiberg-Witten central charge
    Iorio, A
    PHYSICS LETTERS B, 2000, 487 (1-2) : 171 - 174