Land-cover classification in the Andes of southern Ecuador using Landsat ETM plus data as a basis for SVAT modelling

被引:47
|
作者
Goettlicher, D. [1 ]
Obregon, A. [1 ]
Homeier, J. [2 ]
Rollenbeck, R. [1 ]
Nauss, T. [1 ]
Bendix, J. [1 ]
机构
[1] Univ Marburg, Dept Geog, Lab Climatol & Remote Sensing, D-35032 Marburg, Germany
[2] Univ Gottingen, Albrecht von Haller Inst Plant Sci, D-37073 Gottingen, Germany
关键词
SPECTRAL MIXTURE ANALYSIS; TM DATA; VEGETATION; ACCURACY;
D O I
10.1080/01431160802541531
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A land-cover classification is needed to deduce surface boundary conditions for a soil-vegetation-atmosphere transfer (SVAT) scheme that is operated by a geoecological research unit working in the Andes of southern Ecuador. Landsat Enhanced Thematic Mapper Plus (ETM+) data are used to classify distinct vegetation types in the tropical mountain forest. Besides a hard classification, a soft classification technique is applied. Dempster-Shafer evidence theory is used to analyse the quality of the spectral training sites and a modified linear spectral unmixing technique is selected to produce abundancies of the spectral endmembers. The hard classification provides very good results, with a Kappa value of 0.86. The Dempster-Shafer ambiguity underlines the good quality of the training sites and the probability guided spectral unmixing is chosen for the determination of plant functional types for the land model. A similar model run with a spatial distribution of land cover from both the hard and the soft classification processes clearly points to more realistic model results by using the land surface based on the probability guided spectral unmixing technique.
引用
收藏
页码:1867 / 1886
页数:20
相关论文
共 50 条
  • [21] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    K. Lavanya
    Abhilasha Gondchar
    Irene Maria Mathew
    Sumitkumar Sarda
    S. Ananda Kumar
    Anand Mahendran
    Darshika G. Perera
    Wireless Personal Communications, 2023, 132 : 679 - 697
  • [22] Land-cover classification using both hyperspectral and LiDAR data
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2015, 6 (03) : 189 - 215
  • [23] Evaluation of segment-based gap-filled Landsat ETM plus SLC-off satellite data for land cover classification in southern Saskatchewan, Canada
    Bedard, F.
    Reichert, G.
    Dobbins, R.
    Trepanier, I.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (07) : 2041 - 2054
  • [24] LAND-COVER MODELLING USING CORINE LAND COVER DATA AND MULTI-LAYER PERCEPTRON
    Dzieszko, Piotr
    QUAESTIONES GEOGRAPHICAE, 2014, 33 (01) : 5 - 22
  • [25] Land-cover classification using Radarsat and Landsat imagery for St. Louis, Missouri
    Huang, Heng
    Legarsky, Justin
    Othman, Maslina
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (01): : 37 - 43
  • [26] An automatic approach for urban land-cover classification from Landsat-8 OLI data
    Li, Erzhu
    Du, Peijun
    Samat, Alim
    Xia, Junshi
    Che, Meiqin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (24) : 5983 - 6007
  • [27] Modelling forest stand volume and tree density using Landsat ETM plus data
    Mohammadi, J.
    Joibary, Shaban Shataee
    Yaghmaee, F.
    Mahiny, A. S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (11) : 2959 - 2975
  • [28] THE LAND-COVER MAP OF GREAT-BRITAIN - AN AUTOMATED CLASSIFICATION OF LANDSAT THEMATIC MAPPER DATA
    FULLER, RM
    GROOM, GB
    JONES, AR
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1994, 60 (05): : 553 - 562
  • [29] Classification of Landsat ETM plus Data Using a Bayesian Multi-net Classifier
    Yun, Ouyang
    Jianwen, Ma
    Liwei, Li
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2734 - 2737
  • [30] FUSION OF ALOS PALSAR AND LANDSAT ETM DATA FOR LAND COVER CLASSIFICATION AND BIOMASS MODELING USING NON-LINEAR METHODS
    Wijaya, Arief
    Gloaguen, Richard
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1883 - 1886