Ergodicity, transitivity, and regularity for linear cellular automata over Zm

被引:34
|
作者
Cattaneo, G
Formenti, E
Manzini, G
Margara, L
机构
[1] Univ Milan, Dipartimento Sci Informaz, I-20135 Milan, Italy
[2] Univ Turin, Dipart Sci & Tecnol Avanzante, Turin, Italy
[3] Univ Bologna, Dipartimento Sci Informaz, I-40127 Bologna, Italy
关键词
discrete time dynamical systems; cellular automata; ergodicity; topological transitivity;
D O I
10.1016/S0304-3975(98)00005-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the dynamical behavior of D-dimensional linear cellular automata over Z(m). We provide an easy-to-check necessary and sufficient condition for a D-dimensional linear cellular automata over Z(m) to be ergodic and topologically transitive. As a byproduct, we get that for linear cellular automata ergodicity is equivalent to topological transitivity. Finally, we prove that for 1-dimensional linear cellular automata over Z(m), regularity (denseness of periodic orbits) is equivalent to surjectivity. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 50 条
  • [1] LINEAR CELLULAR AUTOMATA OVER ZM
    ITO, M
    OSATO, N
    NASU, M
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1983, 27 (01) : 125 - 140
  • [2] Complexity of linear cellular automata over Zm
    Jin, XG
    Wang, WH
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 1209 - 1213
  • [3] Surjective linear cellular automata over Zm
    Sato, T
    [J]. INFORMATION PROCESSING LETTERS, 1998, 66 (02) : 101 - 104
  • [4] On ergodic linear cellular automata over Zm
    Cattaneo, G
    Formenti, E
    Manzini, G
    Margara, L
    [J]. STACS 97 - 14TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1997, 1200 : 427 - 438
  • [5] Egodic characterization of linear cellular automata over Zm
    Dept. of Info. and Computer Science, Toyo University, 2100, Kujirai, Kawagoe, Saitama, Japan
    [J]. Theor Comput Sci, 1-2 (135-144):
  • [6] Ergodicity of linear cellular automata over Z(m)
    Sato, T
    [J]. INFORMATION PROCESSING LETTERS, 1997, 61 (03) : 169 - 172
  • [7] Invertible linear cellular automata over Zm:: Algorithmic and dynamical aspects
    Manzini, G
    Margara, L
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 56 (01) : 60 - 67
  • [8] Chaos and ergodicity are decidable for linear cellular automata over (Z/mZ)n
    Dennunzio, Alberto
    Formenti, Enrico
    Grinberg, Darij
    Margara, Luciano
    [J]. INFORMATION SCIENCES, 2020, 539 : 136 - 144
  • [9] Characterization of Three Dimensional Cellular Automata over Zm
    Sah, Ferhat
    Siap, Irfan
    Akin, Hasan
    [J]. FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 138 - 141
  • [10] On the ergodic properties of certain additive cellular automata over Zm
    Akin, H
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) : 192 - 197