Evolution of haplodiploidy in dermanyssine mites (Acari: Mesostigmata)

被引:0
|
作者
Cruickshank, RH
Thomas, RH
机构
[1] Univ Glasgow, Inst Biomed & Life Sci, Div Environm & Evolutionary Biol, Glasgow G12 8QQ, Lanark, Scotland
[2] Nat Hist Museum, Dept Zool, London SW7 5BD, England
关键词
acari; arrhenotoky; genetic systems; haplodiploidy; molecular systematics; phylogenetics; pseudoarrhenotoky;
D O I
10.2307/2640441
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Haplodiploidy, a widespread phenomenon in which males are haploid and females are diploid, can be caused by a number of different underlying genetic systems. In the most common of these, arrhenotoky, males arise from unfertilized eggs, whereas females arise from fertilized eggs. In another system, pseudoarrhenotoky, males arise from fertilized eggs, but they eliminate the paternal genome at some point prior to spermatogenesis, with the consequence that they do not pass this genome to their offspring. In 1931 Schrader and Hughes-Schrader suggested that arrhenotoky arises through a series of stages involving pseudoarrhenotokous systems such as those found in many scale insects (Homoptera: Coccoidea), however, their hypothesis has been largely ignored. We have used a phylogenetic analysis of 751 base pairs of 28S rDNA from a group of mites (Mesostigmata: Dermanyssina) that contains arrhenotokous, pseudoarrhenotokous, and ancestrally diplodiploid members to test this hypothesis. Neighbor-joining, maximum-parsimony, and maximum-likelihood methods all indicate that the arrhenotokous members of this group form a clade that arose from a pseudoarrhenotokous ancestor, rather than directly from a diplodiploid one. This provides unequivocal support for the hypothesis of Schrader and Hughes-Schrader. The wider implications of this result for the evolution of uniparental genetic systems are discussed.
引用
收藏
页码:1796 / 1803
页数:8
相关论文
共 50 条
  • [22] Mites of the family Phytoseiidae Berlese from Kenya (Acari: Mesostigmata)
    El-Banhawy, E. M.
    Knapp, M.
    ZOOTAXA, 2011, (2945) : 1 - 176
  • [23] Diversity of soil mites (Acari: Mesostigmata) in streamside mountain forests
    Kamczyc, Jacek
    Skorupski, Maciej
    Dyderski, Marcin K.
    Horodecki, Pawel
    Rawlik, Mateusz
    Jagodzinski, Andrzej M.
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (13) : 4046 - 4056
  • [24] New taxa of mites associated with Australian termites (Acari: Mesostigmata)
    Halliday, RB
    INTERNATIONAL JOURNAL OF ACAROLOGY, 2006, 32 (01) : 27 - 38
  • [25] Predatory Phytoseiidae mites (Acari: Mesostigmata) in vineyards of northern Portugal
    Silva, Darliane Evangelho
    Do Nascimento, Joseane Moreira
    Correa, Luiz Liberato Costa
    Da Silva, Rita Tatiane Leao
    Juchem, Calebe Fernando
    Rodrigues, Raul
    Ferla, Noeli Juarez
    SYSTEMATIC AND APPLIED ACAROLOGY, 2023, 28 (05) : 778 - 791
  • [26] STUDIES OF MITES OF THE GENUS ZERCON (ACARI, MESOSTIGMATA) FROM THE CAUCASUS
    BALAN, PG
    VINNIK, EN
    ZOOLOGICHESKY ZHURNAL, 1993, 72 (05): : 48 - 54
  • [27] New data on the knowledge of Gaeolaelaps mites (Acari: Mesostigmata: Laelapidae)
    Nemati, Alireza
    Gwiazdowicz, Dariusz J.
    Khalili-Moghadam, Arsalan
    ACAROLOGIA, 2018, 58 (03) : 710 - 734
  • [28] Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania
    Manu, Minodora
    Bancila, Raluca Ioana
    Onete, Marilena
    TURKISH JOURNAL OF ZOOLOGY, 2018, 42 (06) : 673 - +
  • [29] Phytoseiid mites (Acari: Mesostigmata) of Anjouan Island (Comoros Archipelago)
    Kreiter, Serge
    Payet, Rose-My
    Azali, Hamza Abdou
    ACAROLOGIA, 2021, 61 (01) : 62 - 83
  • [30] Uropodina mites with unusual chelicerae from Thailand (Acari: Mesostigmata)
    Kontschan, Jeno
    ZOOTAXA, 2011, (2984) : 54 - 66