Improvement of the Carbon Electrode Treatment to Obtain Bioanodes for Microbial Electrolysis Cell (MEC)

被引:7
|
作者
Mejia-Lopez, M. [1 ]
Verea, L. [2 ]
Verde, A. [1 ]
Lara, B. [3 ]
Campos, I. [1 ]
Najera, M. C. [1 ]
Sebastian, P. J. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Temixco 62580, Morelos, Mexico
[2] Univ Ciencias & Artes Chiapas, Ctr Invest & Desarrollo Tecnol Energias Renovable, Tuxtla Gutierrez 29039, Chiapas, Mexico
[3] Univ Autonoma San Luis Potosi, Fac Ingn, Zona Univ Poniente, Av Dr Manuel Nava 8, San Luis Potosi 78290, Slp, Mexico
来源
关键词
Biofilm; bioanode; hydrogen; MEC; FUEL-CELLS; HYDROGEN-PRODUCTION; GEOBACTER-SULFURREDUCENS; ELECTROCHEMICAL CHARACTERIZATION; RHODOBACTER-CAPSULATUS; ELECTRICITY PRODUCTION; ANODE MODIFICATION; BIOFILM FORMATION; POWER-GENERATION; LIGHT-INTENSITY;
D O I
10.20964/2018.04.64
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work a process to modify the surface of carbon electrode was studied with the goal of improving the adherence of the bacteria on it. This study was performed through an experimental design to determine the effect of the parameters tested for the biofilm formation. The biofilms were analyzed with cyclic voltammetry technique and the kinetic parameters of alpha and kapp were analyzed with a statistical tool called the surface response. The parameters varied in the treatment were: concentration of the substrate, temperature, potential applied and time of the treatment. The results showed differences on the biofilm formed mainly with the concentration of the substrate and the potential applied in the electrode treatment. An alpha of 0.5 obtained suggests an electron transport due to the confined redox compounds within the biofilm and the k(app) varied from 0.07 s(-1) to 0.4 s(-1). Finally, the biofilms formed were used in a MEC to probe their capability as bio-anodes for hydrogen production and was obtained a production of 0.21 m(3) H-2/m(3) d.
引用
下载
收藏
页码:3970 / 3985
页数:16
相关论文
共 50 条
  • [21] Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater
    Escapa, A.
    Gil-Carrera, L.
    Garcia, V.
    Moran, A.
    BIORESOURCE TECHNOLOGY, 2012, 117 : 55 - 62
  • [22] Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor
    Wang, Kai
    Sheng, Yuxing
    Cao, Hongbin
    Yan, Keping
    Zhang, Yi
    Chemical Engineering Journal, 2017, 307 : 150 - 158
  • [23] Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor
    Wang, Kai
    Sheng, Yuxing
    Cao, Hongbin
    Yan, Keping
    Zhang, Yi
    CHEMICAL ENGINEERING JOURNAL, 2017, 307 : 150 - 158
  • [24] Functional microorganisms and their cooperation in microbial electrolysis cell (MEC) for H2 production
    Wang, Aijie
    Sun, Dan
    Liu, Lihong
    Ren, Nanqi
    Liu, Wenzong
    Cheng, Haoyi
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S407 - S407
  • [25] Bioelectrogenic characterization of mixed culture during the startup process of a microbial electrolysis cell (MEC)
    Liu, Wenzong
    Wang, Aijie
    Ren, Nanqi
    Zhang, Yunqing
    Cheng, Haoyi
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S635 - S636
  • [26] Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation
    Verea, L.
    Savadogo, Oumarou
    Verde, A.
    Campos, J.
    Ginez, F.
    Sebastian, P. J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 8938 - 8946
  • [27] Anaerobic biological fermentation of urine as a strategy to enhance the performance of a microbial electrolysis cell (MEC)
    Barbosa, Sonia G.
    Rodrigues, Telma
    Peixoto, Luciana
    Kuntke, Philipp
    Alves, Maria Madalena
    Pereira, Maria Alcina
    Ter Heijne, Annemiek
    RENEWABLE ENERGY, 2019, 139 : 936 - 943
  • [28] Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production
    Bora, Abhispa
    Mohanrasu, K.
    Swetha, T. Angelin
    Ananthi, V.
    Sindhu, Raveendran
    Chi, Nguyen Thuy Lan
    Pugazhendhi, Arivalagan
    Arun, A.
    Mathimani, Thangavel
    FUEL, 2022, 328
  • [29] Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production
    Bora, Abhispa
    Mohanrasu, K.
    Angelin Swetha, T.
    Ananthi, V.
    Sindhu, Raveendran
    Chi, Nguyen Thuy Lan
    Pugazhendhi, Arivalagan
    Arun, A.
    Mathimani, Thangavel
    Fuel, 2022, 328
  • [30] Biotransformation and inhibitory effect of furanic and phenolic compounds in the anode of a microbial electrolysis cell (MEC)
    Zeng, Xiaofei
    Collins, Maya
    Borole, Abhijeet
    Pavlostathis, Spyros
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252